
xPC Target™ 3
API Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

xPC Target™ API Guide

© COPYRIGHT 2002–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
July 2002 Online only New for Version 2 (Release 13)
October 2002 Online only Updated for Version 2 (Release 13)
September 2003 Online only Revised for Version 2.0.1 (Release 13SP1)
June 2004 Online only Revised for Version 2.5 (Release 14)
August 2004 Online only Revised for Version 2.6 (Release 14+)
October 2004 Online only Revised for Version 2.6.1 (Release 14SP1)
November 2004 Online only Revised for Version 2.7 (Release 14SP1+)
March 2005 Online only Revised for Version 2.7.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.8 (Release 14SP3)
March 2006 Online only Revised for Version 2.9 (Release 2006a)
May 2006 Online only Revised for Version 3.0 (Release 2006a+)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)

Contents

Introduction

1
xPC Target™ API versus xPC Target™ COM API 1-2

What Is xPC Target™ API? . 1-4

What Is xPC Target™ COM API? . 1-6

Required Products . 1-8

xPC Target API

2
Before You Start . 2-2

Introduction . 2-2
Important Guidelines . 2-2

Visual C Example . 2-5
Introduction . 2-5
Directories and Files . 2-5
Building the xPC Target Application 2-7
Creating a Visual C Application . 2-7
Building a Visual C Application . 2-12
Running a Visual C xPC Target API Application 2-12
Using the xPC Target API C Application 2-13
C Code for sf_car_xpc.c . 2-19

v

xPC Target™ COM API

3
Before You Start . 3-2

Example Visual Basic® GUI Using COM Objects 3-4
Introduction . 3-5
Description of Simulink® Water Tank Model 3-5
Creating a Simulink® Target Model 3-7
Tagging Block Parameters . 3-8
Tagging Block Signals . 3-11
Creating the Target Application and Model-Specific COM

Library . 3-14
Model-Specific COM Interface Library

(model_nameCOMiface.dll) . 3-18
Creating a New Microsoft® Visual Basic® Project 3-21
Referencing the xPC Target™ COM API and Model-Specific

COM Libraries . 3-22
Creating the Graphical Interface . 3-27
Setting Properties . 3-29
Writing Code . 3-31
Creating the General Declarations 3-33
Creating the Load Procedure . 3-33
Creating Event Procedures . 3-35
Referencing Parameters and Signals Without Using

Tags . 3-41
Testing the Visual Basic® Application 3-45
Building the Visual Basic® Application 3-45
Deploying the API Application . 3-46
Creating a New Visual Basic® Project Using Microsoft®

Visual Studio® 7.1 or 8.0 . 3-47

xPC Target™ COM API Demos and Scripts

4
Microsoft® Visual Basic® 7.1 (.NET 2003) Demo 4-2

Introduction . 4-2
Before Starting . 4-3
Accessing the Demo Project Solution 4-3

vi Contents

Rebuilding the Demo Project Solution 4-4
Using the Demo Executable . 4-4

Microsoft® Visual Basic® 6.0 Demo 4-5
Introduction . 4-5
Before Starting . 4-6
Accessing the sf_car_xpc Project . 4-6
Rebuilding the sf_car_xpc Project . 4-7
Using the sf_car_xpc Executable . 4-7

Tcl/Tk Scripts . 4-8
Introduction . 4-8
Required Tcl/Tk Software . 4-9
Using the Demo Scripts . 4-9

API Function and Method Reference

5
C API Functions . 5-2

Logging, Scope, and File System Structures 5-2
Communications Functions . 5-3
Target Application Functions . 5-3
Data Logging Functions . 5-4
Scope Functions . 5-5
File System Functions . 5-7
Target Scope Functions . 5-8
Monitoring and Tuning Functions . 5-8
Miscellaneous Functions . 5-9

COM API Methods . 5-10
Communication Objects (xPCProtocol) 5-10
Scope Objects (xPCScopes) . 5-11
Target Objects (xPCTarget) . 5-13
File System Objects (xPCFileSystem) 5-15

vii

API Functions and Methods

6

xPC Target™ C API Error Messages

A

Index

viii Contents

1

Introduction

Using either the xPC Target™ API dynamic link library (DLL) or the xPC
Target component object model (COM) API library, you can create custom
applications to control a real-time application running on the target PC. You
generate real-time applications from Simulink® models.

xPC Target™ API versus xPC
Target™ COM API (p. 1-2)

Briefly describes each library and
why you might want to use one
library over the other.

What Is xPC Target™ API? (p. 1-4) Describes the xPC Target API
library.

What Is xPC Target™ COM API?
(p. 1-6)

Describes the xPC Target COM API
library.

Required Products (p. 1-8) Products from The MathWorks and
third-party products you need to use
with xPC Target

1 Introduction

xPC Target™ API versus xPC Target™ COM API
The xPC Target™ API and xPC Target COM API interfaces provide the same
functionality for you to write custom applications. There is no difference in
performance or functionality between applications written against either
library. Note that the APIs are not threadsafe.

The xPC Target API DLL consists of C functions that you can incorporate into
any high-level language application. The xPC Target COM API consists of
a suite of interfaces that you can reference while building a graphic user
interface (GUI) application. You can incorporate these interfaces using
programming environments that work with COM objects. A user can use an
application written through either interface to load, run, and monitor an xPC
Target application without interacting with MATLAB®. With the xPC Target
API, you write the application in a high-level language (such as C, C++, or
Java) that works with an xPC Target application; this option requires that
you are an experienced programmer. With xPC Target COM API, you use a
graphical development environment to create a GUI that works with an xPC
Target application. Designed to work with Microsoft® COM, the xPC Target
COM API conforms to the component object model standard established by
Microsoft.

The xPC Target API is distributed with two dynamic link libraries (DLLs)
that make it easier to integrate with various development tools, tailoring the
development environment to your needs:

• A function library (xpcapi.dll)

• A component library (xpcapicom.dll)

The following sections describe each library:

• “What Is xPC Target™ API?” on page 1-4

• “What Is xPC Target™ COM API?” on page 1-6

1-2

xPC Target™ API versus xPC Target™ COM API

Note In this book, second-person references apply to those who write the xPC
Target API and COM API applications. For example, “You can assign multiple
labels to one tag.” Third-person references apply to those who run the xPC
Target API and COM API applications. For example, “You can later distribute
this executable to users, who can then use the GUI application to work with
target applications.”

1-3

1 Introduction

What Is xPC Target™ API?
The xPC Target™ API consists of a series of C functions that you can call from
a C or C++ application. These functions enable you to

• Establish communication between the host PC and the target PC via an
Ethernet or serial connection

• Load the target application, a .dlm file, to the target PC

• Run that application on the target PC

• Monitor the behavior of the target application on the target PC

• Stop that application on the target PC

• Unload the target application from the target PC

• Close the connection to the target PC

The xpcapi.dll file contains the xPC Target API dynamic link library. It
contains over 90 functions that enable run-time linking rather than static
linking at compile time. The functions provide all the information and
accessibility needed to access the target application. Accessing the xPC Target
API DLL is beneficial when you are building applications using development
environments such as Microsoft Foundation Class Library/Active Template
Library (MFC/ATL), DLL, Win32 (non-MFS) program and DLL, and console
programs integrating with third-party product APIs (for example, Altia).

All custom xPC Target API applications must link with the xpcapi.dll
file (xPC API DLL). Also associated with the dynamic link library is the
xpcinitfree.c file. This file contains functions that load and unload the
xPC Target API. You must build this file along with the custom xPC Target
API application.

The documentation reflects the fact that the API is written in the C
programming language. However, the API functions are usable from other
languages and applications, such as C++ and Java.

1-4

What Is xPC Target™ API?

Note To write a non-C application that calls functions in the xPC Target API
library, refer to the compiler documentation for a description of how to access
functions from a library DLL. You must follow these directions to access the
xPC Target API DLL.

The following chapters describe the xPC Target API in more detail:

• Chapter 2, “xPC Target API” describes how to create a C xPC Target API
application.

• Chapter 5, “API Function and Method Reference” and Chapter 6, “API
Functions and Methods” describe the xPC Target C and COM API functions.

1-5

1 Introduction

What Is xPC Target™ COM API?
The xPC Target™ COM API is an open environment application program
interface designed to work with Microsoft COM and the xPC Target API. The
xPC Target COM API provides the same functionality as the xPC Target API.
It is a programming layer that sits between you and the xPC Target API.
The difference is that while the xPC Target API is a dynamic link library of
C functions, the xPC Target COM API dynamic link library is an organized
collection of objects, classes, and functions. You access this collection through
a graphical development environment such as Microsoft Visual Basic. Using
such a graphical development environment, you can create a custom GUI
application that can work with one xPC Target application. While the xPC
Target API requires you to be an accomplished C or C++ programmer, the xPC
Target COM API makes no such demand.

The xPC Target COM API library depends on xpcapi.dll, the xPC Target
dynamic link library. However, the xPC Target API is independent of the
xPC Target COM API.

The xPC Target COM API has the following features:

• A DLL component server library — xpcapicom.dll is a component server
DLL library COM interface consisting of component interfaces that access
the target PC. The COM API library enhances the built-in functionality of
a programming language by allowing you to easily access the xPC Target
API for rapid development of xPC Target GUI.

• Built on top of the xPC Target API — Via an application such as Visual
Basic, xpcapicom.dll, using a structured object model hierarchy, provides
full access to all the data and methods needed to interface with an xPC
Target application. It also enables search functionality and bidirectional
browsing capabilities. Generally, you view object models by selecting a type
and viewing its members. Using the xPC Target COM API library, you can
select a member and view the types to which it belongs.

• Programming language independent — This section describes how to create
an xPC Target COM API application using Visual Basic. However, the xPC
Target COM API interface is not limited to this third-party product. You
can add the COM API library to any development environment that can
access COM libraries, such as Visual C++ or Java, as well as scripting
languages such as Perl, Python, and Basic.

1-6

What Is xPC Target™ COM API?

• Ideal for use with Visual Basic — The xPC Target COM API works well
with Visual Basic, and extends the event-driven programming environment
of Visual Basic.

See Chapter 3, “xPC Target™ COM API” for a description of how to use the
xPC Target COM API library.

1-7

1 Introduction

Required Products
Refer to “Required Products” in the xPC Target™ Getting Started Guide for a
list of the required xPC Target products. In addition, you need the following
products:

• Third-Party Compiler — Use a third-party compiler to build a custom
application that calls functions from the xPC API library. Although the
xPC API library is written in C, you can write the application that calls
these functions in another high-level language, such as C++. You can use
any compiler that can generate code for Win32 systems.

To write a non-C application that calls functions in the xPC Target API
library, refer to the compiler documentation for a description of how to
access functions from a library DLL. You must follow these directions to
access the xPC Target API DLL.

• Third-Party Graphical Development Environment — Use a third-party
graphical development environment to build a custom application that
references interfaces in the xPC COM API library. Layered on top of the
xPC API library, the xPC COM API library enables you to write custom
applications using a component object model library. You can use any
compiler that can work with component object model (COM) objects.

1-8

2

xPC Target API

Before You Start (p. 2-2) Introduces the xPC Target API.

Visual C Example (p. 2-5) Describes how to use Microsoft
Visual C++ to generate a Visual C
application that can download and
run an xPC Target application.

2 xPC Target API

Before You Start

In this section...

“Introduction” on page 2-2

“Important Guidelines” on page 2-2

Introduction
This chapter describes how to write a custom application using the xPC
Target API. This API enables you to write high-level language applications to
load an xPC Target application, and run and control it.

Before you start, read this section for important notes on writing custom
applications based on the xPC Target API. It is assumed that you already
know how to write C or C++ code.

This chapter provides tutorials on how to generate a C application for xPC
Target. It also provides some guidelines on using the xPC Target API. Refer
to “Visual C Example” on page 2-5 for tutorials that you can follow to create,
build, and run a sample Visual C program.

For the xPC Target API function synopses and descriptions, refer to “API
Function and Method Reference”.

Important Guidelines
This section describes some guidelines you should keep in mind before
beginning to write xPC Target API applications with the xPC Target API DLL:

• You must carefully match the data types of the functions documented in
the API function reference. For C, the API includes a header file that
matches the data types.

• To write a non-C application that calls functions in the xPC Target API
library, refer to the compiler documentation for a description of how to
access functions from a library DLL. You must follow these directions to
access the xPC Target API DLL

2-2

Before You Start

• If you want to rebuild the model sf_car_xpc.mdl, or otherwise use
MATLAB, you must have xPC Target Version 2.0 or later. This is the
version of xPC Target that comes with Release 13 (MATLAB 6.5) or later.

To determine the version of xPC Target you are currently using, at the
MATLAB command line, type

xpclib

This opens the xPC Target Simulink blocks library. The version of xPC
Target should be at the bottom of the window.

• You can work with xPC Target applications with either MATLAB or an xPC
Target API application. If you are working with an xPC Target application
simultaneously with a MATLAB session interacting with the target, keep
in mind that only one application can access the target PC at a time. To
move from the MATLAB session to your application, in the MATLAB
Command Window, type

close(xpc)

This frees the connection to the target PC for use by your xPC Target API
application. Conversely, you will need to quit your application, or do the
equivalent of calling the function xPCClosePort, to access the target from
a MATLAB session.

• All xPC Target API functions that communicate with the target PC check
for time-outs during communication. If a time-out occurs, these functions
will exit with the global variable xPCError set to either ECOMTIMEOUT
(serial connections) or ETCPTIMEOUT (TCP/IP connections). Use the
xPCGetLoadTimeOut and xPCSetLoadTimeOut functions to get and set the
time-out values, respectively.

There are a few things that are not covered in Chapter 5, “API Function and
Method Reference” and Chapter 6, “API Functions and Methods” for the
individual functions, because they are common to almost all the functions in
the xPC Target API. These are

• Almost every function (except xPCOpenSerialPort, xPCOpenTcpIpPort,
xPCGetLastError, and xPCErrorMsg) has as one of its parameters the
integer variable port. This variable is returned by xPCOpenSerialPort
and xPCOpenTcpIpPort, and is the placeholder for the communications link

2-3

2 xPC Target API

with the target PC. The returned value from these two functions should
be used in the other functions to ensure that the proper communications
channel is used.

• Almost every function (except xPCGetLastError and xPCErrorMsg) sets a
global error value in case of error. The application obtains this value by
calling the function xPCGetLastError, and retrieves a descriptive string
about the error by using the function xPCErrorMsg. Although the actual
values of the error numbers are subject to change, a zero value always
means that the operation completed without errors, while a nonzero value
typically signifies an error condition. Note also that the library resets the
error value every time an API function is called; therefore, your application
should check the error status as soon as possible after a function call.

Some functions also use their return values (if applicable) to signify that
an error has occurred. In these cases as well, you can obtain the exact
error with xPCGetLastError.

2-4

Visual C Example

Visual C Example

In this section...

“Introduction” on page 2-5

“Directories and Files” on page 2-5

“Building the xPC Target Application” on page 2-7

“Creating a Visual C Application” on page 2-7

“Building a Visual C Application” on page 2-12

“Running a Visual C xPC Target API Application” on page 2-12

“Using the xPC Target API C Application” on page 2-13

“C Code for sf_car_xpc.c” on page 2-19

Introduction
This release includes an example using the xPC Target API to create a Win32
console application written in C. You can use this example as a template to
write your own application.

Before you start, you should have an existing xPC Target application that you
want to load and run on a target PC. The following tutorials use the target
application sf_car_xpc.dlm, built from the Simulink model sf_car_xpc.mdl,
which models an automatic transmission control system. The automatic
transmission control system consists of modules that represent the engine,
transmission, and vehicle, with an additional logic block to control the
transmission ratio. User inputs to the model are in the form of throttle (%)
and brake torque (pound-foot). You can control the target application through
MATLAB with the Simulink External Model interface, or through a custom
xPC Target API application, which you can create using the tutorials in this
chapter.

Directories and Files
This directory contains the C source of a Win32 console application that serves
as an example for using the xPC Target API. The necessary sf_car_xpc files
are in the directory

2-5

2 xPC Target API

C:\matlabroot\toolbox\rtw\targets\xpc\api

Filename Description

VisualBasic\Models\-
sf_car_xpc\sf_car_xpc.mdl

Simulink model for use with xPC Target

VisualBasic\Models\-
sf_car_xpc\sf_car_xpc.dlm

Target application compiled from Simulink
model

VisualC\sf_car_xpc.dsp Project file for API application

sf_car_xpc.c Source code for API application

VisualC\sf_car_xpc.exe Compiled API application

VisualBasic\Models\-
xpcapi.dll

xPC Target API functions for all
programming languages. Place this file in
one of the following, in order of preference:

• Directory from which the application is
loaded

• Windows system directory

The necessary xPC Target API files are in the directory

C:\matlabroot\toolbox\rtw\targets\xpc\api

You will need the files listed below for creating your own API application
with Microsoft Visual C++.

Filename Description

xpcapi.h Mapping of data types between xPC Target API and
Visual C

xpcapiconst.h Symbolic constants for using scope, communication,
and data-logging functions

xpcinitfree.c C functions to upload API from xpcapi.dll

xpcapi.dll xPC Target API functions for all programming
languages

2-6

Visual C Example

Building the xPC Target Application
The tutorials in this chapter use the prebuilt xPC Target application

C:\matlabroot\toolbox\rtw\targets\
xpc\api\VisualC\sf_car_xpc.dlm

You can rebuild this application for your example:

1 Create a new directory under your MathWorks directory. For example,

D:\mwd\sf_car_xpc2

2 Create a Simulink model and save to this directory. For example,

sf_car_xpc2.mdl

3 Build the target application with Real-Time Workshop® and Microsoft
Visual C++. The target application file sf_car_xpc2.dlm is created.

Using Another C/C++ Compiler
The tutorials in this chapter describe how to create and build C applications
using Microsoft Visual C++. However, to build an xPC Target API C
application, you can use any C/C++ compiler capable of generating a
Win32 application. You will need to link and compile the xPC Target API
application along with xpcinitfree.c to generate the executable. The file
xpcinitfree.c contains the definitions for the files in the xPC Target API
and is located at

C:\matlabroot\toolbox\rtw\targets\xpc\api

Creating a Visual C Application
This tutorial describes how to create a Visual C application. It is assumed
that you know how to write C applications. Of particular note when writing
xPC Target API applications,

• Call the function xPCInitAPI at the start of the application to load the
functions.

• Call the function xPCFreeAPI at the end of the application to free the
memory allocated to the functions.

2-7

2 xPC Target API

To create a C application with a program such as Microsoft Visual C++,

1 From the previous tutorial, change directory to the new directory. This is
your working directory. For example,

D:\mwd\sf_car_xpc2

2 Copy the files xpcapi.h, xpcapi.dll, xpcapiconst.h, and xpcintfree.c
to the working directory. For example,

D:\mwd\sf_car_xpc2

3 Click the Start button, choose the Programs option, and choose the
Microsoft Visual C++ entry. Select the Microsoft Visual C++ option.

The Microsoft Visual C++ application is displayed.

4 From the File menu, click New.

5 At the New dialog, click the File tab.

2-8

Visual C Example

6 In the left pane, select C++ Source File. In the right, enter the name of
the file. For example, sf_car_xpc.c. Select the directory. For example,
C:\mwd\sf_car_xpc2.

7 Click OK to create this file.

8 Enter your code in this file. For example, you can enter the contents of
sf_xpc_car.c into this file.

9 From the File menu, click New.

10 At the New dialog, click the Projects tab.

2-9

2 xPC Target API

11 In the left pane, select Win32 Console Application. On the right, enter
the name of the project. For example, sf_car_xpc. Select the working
directory from step 1. For example, C:\mwd\sf_car_xpc2.

12 To create the project, click OK.

A Win32 Console Application dialog is displayed.

13 To create an empty project, select An empty project.

14 Click Finish.

15 To confirm the creation of an empty project, click OK at the following dialog.

16 To add the C file you created in step 7, from the Project menu, select the
Add to Project option and select Files.

17 Browse for the C file you created in step 7. For example,

2-10

Visual C Example

D:\mwd\sf_car_xpc2\sf_car_xpc.c

Click OK.

18 Browse for the xpcinitfree.c file. For example, D:\mwd\xpcinitfree.c.
Click OK.

Note The code for linking in the functions in xpcapi.dll is in the file
xpcinitfree.c. You must compile and link xpcinitfree.c along with
your custom application for xpcapi.dll to be properly loaded.

19 If you did not copy the files xpcapi.h, xpcapi.dll, and xpcapiconst.h
into the working or project directory, you should either copy them now, or
also add these files to the project.

20 From the File menu, click Save Workspace.

When you are ready to build your C application, go to “Building a Visual
C Application” on page 2-12.

Placing the Target Application File in a Different Directory
The sf_car_xpc.c file assumes that the xPC Target application file
sf_car_xpc.dlm is in the same directory as sf_car_xpc.c. If you move that
target application file (sf_car_xpc.dlm) to a new location, change the path
to this file in the API application (sf_car_xpc.c) and recompile the API
application. The relevant line in sf_car_xpc.c is in the function main(),
and looks like this:

xPCLoadApp(port, ".", "sf_car_xpc"); checkError("LoadApp: ");

The second argument (".") in the call to xPCLoadApp is the path to
sf_car_xpc.dlm. The "." indicates that the files sf_car_xpc.dlm and
sf_car_xpc.c are in the same directory. If you move the target application,
enter its new path and rebuild the xPC Target API application.

2-11

2 xPC Target API

Building a Visual C Application
This tutorial describes how to build the Visual C application from the previous
tutorial, or to rebuild the example executable sf_car_xpc.exe, with Microsoft
Visual C++:

1 To build your own application using the xPC Target API, ensure that the
files xpcapi.h, xpcapi.dll, xpcapiconst.h, and xpcinitfree.c are in
the working or project directory.

2 If Microsoft Visual C++ is not already running, click the Start button,
choose the Programs option, and choose the Microsoft Visual C++ entry.
Select the Microsoft Visual C++ option.

3 From the File menu, click Open.

The Open dialog is displayed.

4 Use the browser to select the project file for the application you want to
build. For example, sf_car_xpc.dsp.

5 If a corresponding workspace file (for example, sf_car_xpc.dsw) exists for
that project, a dialog prompts you to open that workspace instead. Click
OK.

6 Build the application for the project. From the Build menu, select either
the Build project_name.exe or Rebuild All option.

Microsoft Visual C++ creates a file named project_name.exe, where
project_name is the name of the project.

When you are ready to run your Visual C Application, go to “Running a Visual
C xPC Target API Application” on page 2-12.

Running a Visual C xPC Target API Application
Before starting the API application sf_car_xpc.exe, ensure the following:

• The file xpcapi.dll must either be in the same directory as the xPC Target
API application executable, or it must be in the Windows system directory
(typically C:\windows\system or C:\winnt\system32) for global access.
The xPC Target API application depends on this file, and will not run if the

2-12

Visual C Example

file is not found. The same is true for other applications you write using
xPC Target API functions.

• The compiled target application sf_car_xpc.dlm must be in the same
directory as the xPC Target API executable. Do not move this file out of
this directory. Moving the file requires you to change the path to the target
application in the API application and recompile, as described in “Building
a Visual C Application” on page 2-12.

Using the xPC Target API C Application
Any xPC Target API application requires you to have a working target PC
running at least xPC Target Version 2.0 (Release 13).

This tutorial assumes that you are using the xPC Target API application
sf_car_xpc.exe that comes with xPC Target. In turn, sf_car_xpc.exe
expects that the xPC Target application is sf_car_xpc.dlm.

If you are going to run a version of sf_car_xpc.exe that you compiled yourself
using the sf_car_xpc.c code that comes with xPC Target, you can run that
application instead. Ensure that the following files are in the same directory:

• sf_car_xpc.exe, the xPC Target API executable

• sf_car_xpc.dlm, the xPC Target application to be loaded to the target PC

• xpcapi.dll, the xPC Target API dynamic link library

If you copy this file to the Windows system directory, you do not need to
provide this file in the same directory.

How to Run the sf_car_xpc Executable

1 Create an xPC Target boot disk with a serial or network communication. If
you use serial communications, set the baud rate to 115200. Otherwise,
create the boot disk as directed in xPC Target Getting Started.

2 Start the target PC with the xPC Target boot disk.

The target PC displays messages like the following in the top rightmost
message area.

2-13

2 xPC Target API

System: Host-Target Interface is RS232 (COM1/2)

or

System: Host-Target Interface is TCP/IP (Ethernet)

3 If you have downloaded target applications to the target PC through
MATLAB, in the MATLAB window, type

close(xpc)

This command disconnects MATLAB from the target PC and leaves the
target PC ready to connect to another client.

4 On the host PC, open a DOS window. Change directory to

C:\matlabroot\toolbox\rtw\targets\xpc\api\VisualC

If you are running your own version of sf_car_xpc.exe, change to the
directory that contains the executable and xPC Target application. For
example,

D:\mwd\sf_car_xpc2

5 From that DOS window, enter the command to start the demo application
on the host PC and download the target application to the target PC.

The syntax for the demo command is

sf_car_xpc {-t IpAddress:IpPort|-c COMport}

If you set up the xPC Target boot disk to use TCP/IP, then give the target
PC’s IP address and IP port as arguments to sf_car_xpc, along with the
option -t. For example, at the DOS prompt, type

sf_car_xpc -t 192.168.0.1:22222

If you set up the xPC Target boot disk to use RS-232, give the serial port
number as a command-line option. Note that indexing of serial ports starts
from 0 instead of 1. For example, if you are using serial communication
from COM port 1 on the host PC, type

sf_car_xpc -c 0

2-14

Visual C Example

On the host PC, the demo application displays the following message:

* xPC Target API Demo: sf_car_xpc. *
* *
* Copyright (c) 2000 The MathWorks, Inc. All Rights Reserved. *

Application sf_car_xpc loaded. SampleTime 0.001 StopTime: -1
R Br Th G VehSpeed VehRPM
- ---- -- - ---------- ---------
N 0 0 0 0.000 1000.000

The relevant line here is the last one, which displays the status of the
application. The headings are as follows:

R The status of the target application: R if running, N if
stopped

Br The brake torque; legal values range from 0 to 4000

Th The throttle as a percentage (0 - 100) of the total

G Gear the vehicle is in (ranges between 1 and 4)

VehSpeed Speed of the vehicle in miles per hour

VehRPM Revolutions per minute of the vehicle engine (0 to 6000)

2-15

2 xPC Target API

From this screen, various keystrokes control the target application. The
following list summarizes these keys:

Key Action

s Start or stop the application, as appropriate.

T Increase the throttle by 1 (does not go above 100).

t Decrease the throttle by 1 (does not go below 0).

B Increase the brake value by 20 (does not go above
4000). Note that a positive value for the brake
automatically sets the throttle value to 0, and a
positive value for the throttle automatically sets the
brake value to 0.

b Decrease the brake value by 20 (does not go below 0).

Q or Ctrl+C Quit the application.

2-16

Visual C Example

The target PC displays the following messages and three scopes.

6 Hold down the Shift key and hold down T until the value of Th reaches 100.

2-17

2 xPC Target API

7 Press s to start the application.

The first scope (SC1) shows the throttle rising to a maximum value of 100
and the vehicle speed gradually increasing. The third scope (SC3) shows
the vehicle RPM. Notice the changes in the vehicle RPM as the gears shift
from first to fourth gear as displayed in the third numerical scope (SC2).

8 When you are done testing the demo application, type Q or Ctrl+C.

The demo application is disconnected from the target PC, so you can
reconnect to MATLAB.

2-18

Visual C Example

C Code for sf_car_xpc.c
This section contains the C code for the sf_car_xpc.c application:

/* File: sf_car_xpc.c

* Abstract: Demonstrates the use of the xPC Target C-API in Human-Machine

* interaction. This file generates a Win32 Console application,

* which when invoked loads the sf_car_xpc.dlm compiled application

* on to the xPC Target PC.

*

* To build the executable, use the Visual C/C++ project

* sf_car_xpc.dsp.

*

* Copyright 2000-2004 The MathWorks, Inc.

*/

/* Standard include files */

#include <stdio.h>

#include <stdlib.h>

#include <limits.h>

#include <ctype.h>

#include <conio.h>

#include <windows.h>

/* xPC Target C-API specific includes */

#include "xpcapi.h"

#include "xpcapiconst.h"

#define SERIAL 0

#define TCPIP 1

/* max and min are defined by some compilers, so we wrap them in #ifndef's */

#ifndef max

#define max(a, b) (((a) > (b)) ? (a) : (b))

#endif

#ifndef min

#define min(a, b) (((a) < (b)) ? (a) : (b))

#endif

/* Global Variables */

int mode = TCPIP, comPort = 0;

2-19

2 xPC Target API

int port;

int thrPID, brakePID, rpmSID, speedSID, gearSID;

char *ipAddress, *ipPort, *pathToApp = NULL;

/* Function prototypes */

double getParam(int parIdx);

void setParam(int parIdx, double parValue);

void findParam(char *block, char *param, int *id);

void findSignal(char *sig, int *id);

void Usage(void);

void cleanUp(void);

void checkError(char *str);

void processKeys(void);

void parseArgs(int argc, char *argv[]);

int str2Int(char *str);

/* Function: main ==

* Abstract: Main function for the sf_car_xpc demo */

int main(int argc, char *argv[]) {

printf("\n"

"*---*\n"

"* xPC Target API Demo: sf_car_xpc. *\n"

"* *\n"

"* Copyright (c) 2000 The MathWorks, Inc. All Rights Reserved. *\n"

"*---*\n"

"\n");

parseArgs(argc, argv);

atexit(cleanUp);

/* Initialize the API */

if (xPCInitAPI()) {

fprintf(stderr, "Could not load api\n");

return -1;

}

if (mode == SERIAL)

port = xPCOpenSerialPort(comPort, 0);

else if (mode == TCPIP)

2-20

Visual C Example

port = xPCOpenTcpIpPort(ipAddress, ipPort);

else {

fprintf(stderr, "Invalid communication mode\n");

exit(EXIT_FAILURE);

}

checkError("PortOpen: ");

xPCLoadApp(port, ".", "sf_car_xpc"); checkError("LoadApp: ");

printf("Application sf_car_xpc loaded, SampleTime: %g StopTime: %g\n\n",

xPCGetSampleTime(port), xPCGetStopTime(port));

checkError(NULL);

findParam("Throttle", "Value", &thrPID);

findParam("Brake", "Value", &brakePID);

findSignal("Engine/rpm", &rpmSID);

findSignal("Vehicle/mph", &speedSID);

findSignal("shift_logic/p1", &gearSID);

processKeys(); /* Heart of the application */

if (xPCIsAppRunning(port)) {

xPCStopApp(port);

}

return 0;

} /* end main() */

/* Function: processKeys ===

* Abstract: This function reads and processes the keystrokes typed by the

* user and takes action based on them. This function runs for most

* of the program life. */

void processKeys(void) {

int c = 0;

double throttle, brake;

throttle = getParam(thrPID);

brake = getParam(brakePID);

fputs("\nR Br Th G VehSpeed VehRPM \n", stdout);

fputs("- ---- -- - ---------- -------- \n", stdout);

while (1) {

if (_kbhit()) {

2-21

2 xPC Target API

c = _getch();

switch (c) {

case 't':

if (throttle)

setParam(thrPID, --throttle);

break;

case 'T':

if (brake)

setParam(brakePID, (brake = 0));

if (throttle < 100)

setParam(thrPID, ++throttle);

break;

case 'b':

setParam(brakePID, (brake = max(brake - 200, 0)));

if (brake)

setParam(thrPID, (throttle = 0));

break;

case 'B':

if (throttle)

setParam(thrPID, (throttle = 0));

setParam(brakePID, (brake = min(brake + 200, 4000)));

break;

case 's':

case 'S':

if (xPCIsAppRunning(port)) {

xPCStopApp(port); checkError(NULL);

} else {

xPCStartApp(port); checkError(NULL);

}

break;

case 'q':

case 'Q':

return;

break;

default:

fputc(7, stderr);

break;

}

} else {

Sleep(50);

2-22

Visual C Example

}

printf("\r%c %4d %3d %1d %10.3f %10.3f",

(xPCIsAppRunning(port) ? 'Y' : 'N'),

(int)brake, (int)throttle,

(int)xPCGetSignal(port, gearSID),

xPCGetSignal(port, speedSID),

xPCGetSignal(port, rpmSID));

}

} /* end processKeys() */

/* Function: Usage ===

* Abstract: Prints a simple usage message. */

void Usage(void) {

fprintf(stdout,

"Usage: sf_car_xpc {-t IPAddress:IpPort|-c num}\n\n"

"E.g.: sf_car_xpc -t 192.168.0.1:22222\n"

"E.g.: sf_car_xpc -c 1\n\n");

return;

} /* end Usage() */

/* Function: str2Int ===

* Abstract: Converts the supplied string str to an integer. Returns INT_MIN

* if the string is invalid as an integer (e.g. "123string" is

* invalid) or if the string is empty. */

int str2Int(char *str) {

char *tmp;

int tmpInt;

tmpInt = (int)strtol(str, &tmp, 10);

if (*str == '\0' || (*tmp != '\0')) {

return INT_MIN;

}

return tmpInt;

} /* end str2Int */

/* Function: parseArgs ===

* Abstract: Parses the command line arguments and sets the state of variables

* based on the arguments. */

void parseArgs(int argc, char *argv[]) {

if (argc != 3) {

fprintf(stderr, "Insufficient command line arguments.\n\n");

2-23

2 xPC Target API

Usage();

exit(EXIT_FAILURE);

}

if (strlen(argv[1]) != 2 ||

strchr("-/", argv[1][0]) == NULL ||

strchr("tTcC", argv[1][1]) == NULL) {

fprintf(stderr, "Unrecognized Argument %s\n\n", argv[1]);

Usage();

exit(EXIT_FAILURE);

}

mode = tolower(argv[1][1]) == 'c' ? SERIAL : TCPIP;

if (mode == SERIAL) {

int tmpInt;

if ((tmpInt = str2Int(argv[2])) > INT_MIN) {

comPort = tmpInt;

} else {

fprintf(stderr, "Unrecognized argument %s\n", argv[2]);

Usage();

}

} else {

char *tmp;

ipAddress = argv[2];

if ((tmp = strchr(argv[2], ':')) == NULL) {

/* memory need not be freed as it is allocated only once, will *

* hang around till app ends. */

if ((ipPort = malloc(6 * sizeof(char))) == NULL) {

fprintf(stderr, "Unable to allocate memory");

exit(EXIT_FAILURE);

}

strcpy(ipPort, "22222");

} else {

*tmp = '\0';

ipPort = ++tmp;

}

}

return;

} /* end parseArgs() */

/* Function: cleanUp ===

* Abstract: Called at program termination to exit in a clean way. */

2-24

Visual C Example

void cleanUp(void) {

xPCClosePort(port);

xPCFreeAPI();

return;

} /* end cleanUp() */

/* Function: checkError ==

* Abstract: Checks for error by calling xPCGetLastError(); if an error is

* found, prints the appropriate error message and exits. */

void checkError(char *str) {

char errMsg[80];

if (xPCGetLastError()) {

if (str != NULL)

fputs(str, stderr);

xPCErrorMsg(xPCGetLastError(), errMsg);

fputs(errMsg, stderr);

exit(EXIT_FAILURE);

}

return;

} /* end checkError() */

/* Function: findParam ===

* Abstract: Wrapper function around the xPCGetParamIdx() API call. Also

* checks to see if the parameter is not found, and exits in that

* case. */

void findParam(char *block, char *param, int *id) {

int tmp;

tmp = xPCGetParamIdx(port, block, param);

if (xPCGetLastError() || tmp == -1) {

fprintf(stderr, "Param %s/%s not found\n", block, param);

exit(EXIT_FAILURE);

}

*id = tmp;

return;

} /* end findParam() */

/* Function: findSignal ==

* Abstract: Wrapper function around the xPCGetSignalIdx() API call. Also

* checks to see if the signal is not found, and exits in that

* case. */

2-25

2 xPC Target API

void findSignal(char *sig, int *id) {

int tmp;

tmp = xPCGetSignalIdx(port, sig);

if (xPCGetLastError() || tmp == -1) {

fprintf(stderr, "Signal %s not found\n", sig);

exit(EXIT_FAILURE);

}

*id = tmp;

return;

} /* end findSignal() */

/* Function: getParam ==

* Abstract: Wrapper function around the xPCGetParam() API call. Also checks

* for error, and exits if an error is found. */

double getParam(int parIdx) {

double p;

xPCGetParam(port, parIdx, &p);

checkError("GetParam: ");

return p;

} /* end getParam() */

/* Function: setParam ==

* Abstract: Wrapper function around the xPCSetParam() API call. Also checks

* for error, and exits if an error is found. */

void setParam(int parIdx, double parValue) {

xPCSetParam(port, parIdx, &parValue);

checkError("SetParam: ");

return;

} /* end setParam() */

/** EOF sf_car_xpc.c **/

2-26

3

xPC Target™ COM API

Before You Start (p. 3-2) Provides some xPC Target™ COM
API guidelines that you should be
aware of before starting to create
your application.

Example Visual Basic® GUI Using
COM Objects (p. 3-4)

Provides procedures that describe
how to write a graphical user
interface (GUI) from within
Microsoft® Visual Basic® using the
xPC Target COM API objects.

3 xPC Target™ COM API

Before You Start
This chapter describes how to write a custom application using the xPC
Target™ COM API. This COM API enables you to write COM applications to
load, run, and control an xPC Target application.

Before you start, read this section for guidelines on writing custom
applications based on the xPC Target COM API. You do not need to be a
seasoned C or C++ programmer to follow the procedures in this chapter, or
to write custom applications with the xPC Target COM API. You should,
however, have some rudimentary programming knowledge.

This chapter provides procedures on how to create xPC Target COM API
applications using Microsoft® Visual Basic®:

• The procedures in this example use the model xpctank.mdl. If you want
to rebuild this model, or otherwise use the MATLAB® software, you must
have xPC Target software version 2.0 or higher.

To determine which version of the software you are currently using, at
the MATLAB command line, type

xpclib

This opens the xPC Target Simulink® blocks library. The xPC Target
software version of should be at the bottom of the window.

• You can work with xPC Target applications with either the MATLAB
software or an xPC Target COM API application. If you are working with
an xPC Target application using an xPC Target COM API application
simultaneously with a MATLAB session interacting with the target, keep
in mind that only one application can access the target PC at a time. To
move from the MATLAB session to your application, in the MATLAB
Command Window, type

close(xpc)

This frees the connection to the target PC for use by your xPC Target
COM API application. Conversely, you will need to have your COM API
application call the Close method to enable access to the target from a
MATLAB session.

3-2

Before You Start

• Although you are building an xPC Target COM API application, you still
need to access the xpcapi.dll. When distributing the xPC Target COM
API application, place this file in one of the following, in order of preference:

- Directory from which application is loaded

- Windows® system directory

3-3

3 xPC Target™ COM API

Example Visual Basic® GUI Using COM Objects

In this section...

“Introduction” on page 3-5

“Description of Simulink® Water Tank Model” on page 3-5

“Creating a Simulink® Target Model” on page 3-7

“Tagging Block Parameters” on page 3-8

“Tagging Block Signals” on page 3-11

“Creating the Target Application and Model-Specific COM Library” on page
3-14

“Model-Specific COM Interface Library (model_nameCOMiface.dll)” on
page 3-18

“Creating a New Microsoft® Visual Basic® Project” on page 3-21

“Referencing the xPC Target™ COM API and Model-Specific COM
Libraries” on page 3-22

“Creating the Graphical Interface” on page 3-27

“Setting Properties” on page 3-29

“Writing Code” on page 3-31

“Creating the General Declarations” on page 3-33

“Creating the Load Procedure” on page 3-33

“Creating Event Procedures” on page 3-35

“Referencing Parameters and Signals Without Using Tags” on page 3-41

“Testing the Visual Basic® Application” on page 3-45

“Building the Visual Basic® Application” on page 3-45

“Deploying the API Application” on page 3-46

“Creating a New Visual Basic® Project Using Microsoft® Visual Studio® 7.1
or 8.0” on page 3-47

3-4

Example Visual Basic® GUI Using COM Objects

Introduction
For demonstration purposes this chapter uses the Simulink® model
xpctank.mdl and requests that you enter tags for signals and parameters
to create the Simulink model xpc_tank1.mdl. You will then build the
real-time target application xpc_tank1.dlm and the GUI xpc_tank1_COM.exe
application using the xPC Target™ COM API library and Microsoft® Visual
Basic®.

Note These topics assume that you know how to create projects and forms
in Microsoft Visual Basic, and that you are familiar with the concept of
automatic code completion. For further details on Microsoft Visual Basic,
refer to your Microsoft® product documentation.

Description of Simulink® Water Tank Model
The xPC Target software includes the Simulink model xpctank.mdl. This is a
model of a water tank with a pump, drain, and valve controller.

3-5

3 xPC Target™ COM API

TankLevel — The water level in the tank is modeled using a limited
integrator named TankLevel.

PumpSwitch — The pump can be turned off manually to override the action
of the controller. This is done by setting PumpSwitch to 0. When PumpSwitch
is 1, the controller can use the control valve to pump water into the tank.

ValveSwitch (drain valve) — The tank has a drain valve that allows water
to flow out of the tank. Think of this as water usage or consumption that
reduces the water level. This behavior is modeled with the constant block
named ValveSwitch, the gain block Gain2, and a summing junction. The
minus sign on the summing junction has the effect of producing a negative
flow rate (drain), which reduces the water level in the tank.

When ValveSwitch is 0 (closed), the valve is closed and water cannot flow out
of the tank. When ValveSwitch is 1 (open), the valve is open and the water
level is reduced by draining the tank.

Controller — The controller is very simple. It is a bang-bang controller and
can only maintain the selected water level by turning the control valve (pump
valve) on or off. A water level set point defines the desired median water level.
Hysteresis enables the pump to avoid high-frequency on and off cycling. This
is done using symmetric upper and lower bounds that are offsets from the
median set point. As a result, the controller turns the control valve (pump
valve) on whenever the water level is below the set point minus the offset.
The summing junction compares this lower bound against the tank water
level to determine whether or not to open the control valve. If the pump is
turned on (PumpSwitch is 1) water is pumped into the tank. When the water
level reaches or exceeds the set point plus the upper bound, the controller
turns off the control valve. When the water level reaches this boundary, water
stops pumping into the tank.

Scope blocks — A standard Simulink Scope block is added to the model for
you to view signals during a simulation. xPC Target Scope blocks are added
to the model for you to view signals while running the target application.
Scope id:1displays the actual water level and the selected water level in the
tank. Scope id:2 displays the control signals. Both scopes are displayed on the
target PC using a scope of type target.

3-6

Example Visual Basic® GUI Using COM Objects

The xpctank.mdl model is built entirely from standard Simulink blocks and
scope blocks from the xPC Target software. It does not differ in any way from
a model you would normally use with the software.

Creating a Simulink® Target Model
A target application model is a Simulink model that describes your physical
system and its behavior. You use this model to create a real-time target
application, and you use this model to select the parameters and signals you
want to connect to a custom graphical interface.

You do not have to modify this model when you use it with Virtual Reality
Toolbox™ or other third-party graphical elements.

Create a target application model before you tag block parameters and block
signals to create a custom graphical interface:

1 In the MATLAB® Command Window, type

xpctank

A Simulink model for a water tank opens. This model contains a set of
equations that describe the behavior of a water tank and a simple controller.

The controller regulates the water level in the tank. This model contains
only standard Simulink blocks and you use it to create the xPC Target
application.

2 From the File menu, click Save as and enter a new filename. For example,
enter xpc_tank1 and then click OK.

Note If you save your own copy of xpctank, be sure to be in the directory that
contains that model before calling it from the MATLAB window.

Your next task is to mark the block properties and block signals. See
“Tagging Block Parameters” on page 3-8 and “Tagging Block Signals” on page
3-11. Building an xPC Target application that has been tagged generates a
model-specific COM library, model_nameifaceCOM.dll, which you can later
reference when writing your xPC Target COM API application.

3-7

3 xPC Target™ COM API

Tagging Block Parameters
Tagging parameters in your Simulink model enables you to generate a
model-specific COM library to provide access to model parameter IDs via the
xPC Target COM API library. These interface blocks contain the parameters
you connect to control devices (such as sliders) in your model. Tagging
parameters makes it easier for you to refer to these parameters later, when
you write your xPC Target COM API application.

Note If you do not tag parameters before you generate your Simulink model,
you must specify model parameters manually. See “Referencing Parameters
and Signals Without Using Tags” on page 3-41 for this procedure.

This procedure uses the modelxpc_tank1.mdl (or xpctank.mdl) as an
example. See “Creating a Simulink® Target Model” on page 3-7.

Note The xpctank model contains tags from the example for creating custom
user interfaces in the xPC Target User’s Guide . As you follow the procedures
in this section and the section “Tagging Block Signals” on page 3-11, you
should remove any existing tags before adding the new tags.

1 Open a Simulink model. For example, in the MATLAB window type
xpc_tank1 or xpctank.

2 Point to a Simulink block, and then right-click. For example, right-click the
SetPoint block.

3 From the menu, click Block Properties.

A block properties dialog box opens.

3-8

Example Visual Basic® GUI Using COM Objects

4 In the Description box, delete the existing tag and enter a tag to the
parameters for this block.

For example, the SetPoint block is a constant with a single parameter that
selects the level of water in the tank. Enter the tag shown below.

The tag has the following format:

xPCTag(1, . . . index_n)= label_1 . . . label_n;

• index_n — Index of a block parameter. Begin numbering parameters
with an index of 1.

• label_n — Name for a block parameter to connect to a property for
the parameter you tag in the model. Separate the labels with a space,
not a comma.

label_1...label_n must consist of the same identifiers as those used by
C/C++ to name functions, variables, and so forth. Do not use names like
-foo.

You can assign multiple labels to one tag, such as

xPCTag(1)=label;xPCTag(1)=label2;

You might want to assign multiple labels if you want to tag a parameter
for different purposes. For example, you can tag a parameter to create
a model-specific COM library. You might also want to tag a parameter
to enable the function xpcsliface to generate a user interface template
model.

You can also issue one tag definition per line, such as

xPCTag(1)=label;
xPCTag(2)=label2;

3-9

3 xPC Target™ COM API

5 Repeat step 4 for the remaining parameters you want to tag.

For example, for the Controller block, enter the tag

For the PumpSwitch and ValveSwitch blocks, enter the tags

To tag a block with four properties, use the following syntax:

xPCTag(1,2,3,4)=label_1 label_2 label_3 label_4;

To tag a block with at least four properties for the second and fourth
properties, use the following syntax:

xPCTag(2,4)=label_1 label_2;

3-10

Example Visual Basic® GUI Using COM Objects

6 From the File menu, click Save as. Enter a filename for your model. For
example, enter

xpc_tank1

You next task is to tag block signals, if you have not already done so; then,
create the model. See “Tagging Block Signals” on page 3-11.

Tagging Block Signals
Tagging signals in your Simulink model enables you to generate a
model-specific COM library to provide access to model signal IDs via the
COM API library. These interface blocks contain the signals you connect
to display devices (such as labels) in your model. Tagging signals makes it
easier for you to refer to these signals later, when you write your xPC Target
COM API application. After you tag signals, you will be ready to build your
xPC Target application.

Note If you do not tag signals before you generate your Simulink model,
you must specify model signals manually. See “Referencing Parameters and
Signals Without Using Tags” on page 3-41 for this procedure.

This procedure uses the model xpc_tank1.mdl (or xpctank.mdl) as an
example. See “Creating a Simulink® Target Model” on page 3-7.

Note The xpctank model contains tags from the example for creating custom
user interfaces in the xPC Target User’s Guide. As you follow the procedures
in this section and the section “Tagging Block Parameters” on page 3-8, you
should remove any existing tags before adding the new tags.

Notice that you cannot select signals on the output ports of any virtual blocks
such as Subsystem and Mux blocks. Also, you cannot select signals on any
function call signal output ports.

1 Open a Simulink model. For example, in the MATLAB window type
xpc_tank1 or xpctank.

3-11

3 xPC Target™ COM API

2 Point to a Simulink signal line, and then right-click.

3 From the menu, click Signal Properties. For example, right-click the
signal line from the TankLevel block.

A Signal Properties dialog box opens.

4 Select the Documentation tab.

5 In the Description box, enter a tag to the signals for this line.

For example, the TankLevel block is an integrator with a single signal that
indicates the level of water in the tank. Enter the tag shown.

6 Repeat step 5 for the remaining signals you want to tag.

3-12

Example Visual Basic® GUI Using COM Objects

For example, for the signal from the ControlValve block, enter the tag
pump_valve.

Signal tags have the following syntax:

xPCTag(1, . . . index_n)=label_1 . . . label_n;

• index_n — Index of a signal within a vector signal line. Begin numbering
signals with an index of 1.

• label_n — Name for a signal to connect to a property for the signal you
tag in the model. Separate the labels with a space, not a comma.

label_1...label_n must consist of the same identifiers as those used by
C/C++ to name functions, variables, and so forth. Do not use names like
-foo.

For single-dimension ports, the following syntax is also valid:

XPCTag=label;

3-13

3 xPC Target™ COM API

You can assign multiple labels to one tag, such as

xPCTag(1)=label;xPCTag(1)=label2;

You might want to assign multiple labels if you want to tag a signal
for different purposes. For example, you can tag a signal to create a
model-specific COM library. You might also want to tag a signal to enable
the function xpcsliface to generate a user interface template model.

You can also issue one tag definition per line, such as

xPCTag(1)=label;
xPCTag(2)=label2;

To tag a signal line with four signals (port dimension of 4) use the following
syntax:

xPCTag(1,2,3,4)=label_1 label_2 label_3 label_4;

To tag the second and fourth signals in a signal line with at least four
signals, use the following syntax:

xPCTag(2,4)=label_1 label_2;

7 From the File menu, click Save as. Enter a filename for your model. For
example, enter

xpc_tank1

Create the target application. See “Creating the Target Application and
Model-Specific COM Library” on page 3-14.

Creating the Target Application and Model-Specific
COM Library
Use this procedure to create a target application that you want to connect
to a GUI application and the model-specific COM interface library
(model_nameCOMiface.dll).

After you copy a Simulink model and tag the block parameters and block
signals, you can create a target application and download it to the target PC.

3-14

Example Visual Basic® GUI Using COM Objects

This procedure uses the Simulink model xpc_tank1.mdl (or xpctank.mdl) as
an example (see “Creating a Simulink® Target Model” on page 3-7).

1 Start or reset the target PC with an xPC Target boot disk in the floppy drive.
Ensure that there is no other application currently loaded on the target PC.

2 If this is a new release of the product, ensure that you have configured the
host PC with the appropriate settings, including the compiler.

3 In the MATLAB window, type xpc_tank1 or xpctank.

A Simulink window opens with the model.mdl file.

4 From the Simulation menu, click Configuration Parameters.

The Configuration Parameters dialog is displayed for the model.

3-15

3 xPC Target™ COM API

5 In the left pane, click the Real-Time Workshop node.

6 In the Target selection section, click the Browse button at the RTW
system target file list. Click xpctarget.tlc if it is not already selected,
then click OK.

7 In the left pane, click the xPC Target options node.

The xPC Target options pane is displayed.

3-16

Example Visual Basic® GUI Using COM Objects

8 Select the Build COM objects from tagged signals/parameters check
box.

9 Click the Solver node.

3-17

3 xPC Target™ COM API

The Solver pane is displayed.

10 Check that the Stop time is long enough for you to interact with the target
application.

11 Click OK to save and exit.

12 From the Tools menu, point to Real-Time Workshop, and then click
Build model.

Th e Real-Time Workshop®, xPC Target, and a third-party C compiler
create the target application xpc_tank1.dlm and the COM object library
xpc_tank1COMiface.dll. The target application is also downloaded to
the target PC.

13 If you want, you can close the MATLAB Command Window.

Note To create the target application and build associated COM objects from
the tagged signals and parameters, you must use the Visual C compiler. You
cannot use the Watcom compiler to build these COM objects.

Your next task is to create a Microsoft Visual Basic API application using
COM objects. This API application connects and controls the target
application. See “Creating a New Microsoft® Visual Basic® Project” on page
3-21. For more information about model-specific COM interface library, refer
to “Model-Specific COM Interface Library (model_nameCOMiface.dll)” on
page 3-18.

Model-Specific COM Interface Library
(model_nameCOMiface.dll)
The generated model-specific COM interface library is a DLL component
server library that enhances programming using the xPC Target COM API
library. A model-specific COM interface library is specific to the model from
which it is generated; do not reference a model-specific library for another
model. If you choose not to generate a model-specific COM interface library,
refer to “Referencing Parameters and Signals Without Using Tags” on page

3-18

Example Visual Basic® GUI Using COM Objects

3-41 for a description of how to otherwise reference parameters and signals in
the xPC Target COM API application.

The mode-specific COM interface library allows users easy access to
preselected tagged signals and desired tagged parameters for use in
conjunction with the xPC Target COM API xPC Target and xPCScope
object signal monitoring and parameter member functions such as
xPCTarget.GetParam, xPCTarget.SetParam, and xPCTarget.GetSignal.

The xPC Target COM generated objects are of two types:

• model_namebio

• model_namept

where model_name is the name of the Simulink model. The model_namebio
type is for tagged block I/O signals and the model_namept type is for tagged
parameters.

Model-Specific COM Signal Object Classes
Model-specific COM signal classes have two types of members in which you
are interested, the Init function and class properties. You will find these
members in the model_namebio class, where model_name is the name of
your model.

The Init function invokes the Init method once, passing it the Ref
property from the xPCProtocol class. This method initializes the object to
communicate with the appropriate target PC to access the signal identifiers
when accessing the object’s properties. Refer to the call in the Microsoft Visual
Basic code example in “Creating the Load Procedure” on page 3-33.

Each class has a list of properties (specified in the Tag syntax in the
Description field of the signal property). These properties return the
xPC Target signal identifiers or signal numbers of the tagged signals.
The generated property name is the name specified in the tagged signal
description using the following syntax:

xPCTag=Property name;

3-19

3 xPC Target™ COM API

For example, in the model xpc_tank1.mdl, there are two signal tags in the
Description field:

• The output from the integrator block labeled TankLevel is tagged
xPCTag=water_level.

• The output from the multiply block labeled ControlValve is tagged
xPCTag=pump_valve.

Model-Specific COM Parameter Object Classes
Model-specific COM signal classes have two types of members in which you
are interested, the Init function and class properties. You will find these
members in the model_namept class, where model_name is the name of your
model.

The Init function invokes the Init method once, passing it as input the
Ref property from the xPCProtocol class. This method initializes the object
to communicate with the appropriate target PC to access the parameter
identifiers when accessing the object’s properties. Refer to the call in the
Microsoft Visual Basic code example in “Creating the Load Procedure” on
page 3-33.

Each class has a list of properties (specified in the Tag syntax in the
Description field of the block property). These properties return the xPC
Target parameter identifiers of the tagged parameters. The generated
property name is the name specified in the tagged signal description using
the following syntax:

xPCTag(1)=Property name;

For example, in the model xpc_tank1.mdl, there are two parameter tags in
the Description field:

• The parameter for SetPoint blocks is tagged xPCTag=set_water_level;

• The parameters for the Controller block are tagged
xPCTag(1,2,3,)=upper_water_level lower_water_level
pump_flowrate;

3-20

Example Visual Basic® GUI Using COM Objects

Creating a New Microsoft® Visual Basic® Project
The following procedures describe how you can create a Microsoft Visual Basic
project to take advantage of the xPC Target COM API to create a custom
GUI for the xPC Target application. The procedures build on the xpctank
(xpc_tank1) model you saved earlier (see “Creating the Target Application
and Model-Specific COM Library” on page 3-14). The Microsoft Visual Basic
environment allows you to interact with your target application using a GUI
while the target application is running in real time on the target PC.

The procedures for the following topics apply to Microsoft® Visual Studio® 6.0.
To use Microsoft Visual Studio 7.1 or 8.0 instead, see “Creating a New Visual
Basic® Project Using Microsoft® Visual Studio® 7.1 or 8.0” on page 3-47.

1 Create a new project directory.

From the directory matlabroot\toolbox\rtw\targets\xpc\api, copy the
file xpcapi.dll (API library) to this new project directory. Alternatively,
you can copy the file xpcapi.dll into the Windows® system directory.

You do not need to copy xpcapiCOM.dll (the COM API library) into the
current directory, but ensure that it is registered in your system (see
“Registering Dependent Dynamic Link Libraries” on page 3-47.)

2 From your MATLAB working directory, copy the files model_name.dlm
(target application) and model_nameCOMiface.dll (model-specific COM
library) to the new project directory.

3 While in this project directory, open Microsoft Visual Basic. From the File
menu, click New Project.

The New Project dialog box opens.

Note Be sure to open the Microsoft Visual Basic project from the project
directory itself, not from Microsoft Visual Basic.

3-21

3 xPC Target™ COM API

4 Select Standard EXE, and then click OK.

The Microsoft Visual Basic Integrated Development Environment opens
with a blank form.

5 From the File menu, click Save Project As and enter a filename for the
form and the project. For example, for the form, enter

xpc_tank1_COM.frm

At the project prompt, enter

xpc_tank1_COM.vbp

Referencing the xPC Target™ COM API and
Model-Specific COM Libraries
You need to reference the xPC Target COM API and model-specific COM
libraries so that Microsoft Visual Basic will use them in the current project.
Assuming that you created the Visual Basic® project as described in the
preceding procedure, reference the library as described in this procedure:

3-22

Example Visual Basic® GUI Using COM Objects

1 From the Project menu, click References.

The References dialog box opens.

2 Select the COM tab.

3 Scroll down the Component Name list to the bottom. Select the xPC
Target API COM Type Library check box.

4 Click Select.

5 Click OK.

The xPC Target COM API Type library (xpcapiCOM.dll) is now available
for use in your project.

3-23

3 xPC Target™ COM API

6 To add the model-specific COM library, click References again from the
Project menu.

The References dialog box opens.

7 Scroll to find your model name. Select the check box xpc_tank1COMiface
1.0 Type Library.

8 Click Select.

9 Click OK.

The model-specific COM API Type Library (xpc_tank1COMiface.dll) is
now available for use in your project. Sections “Viewing Model-Specific
COM Signal Object Classes” on page 3-25 and “Viewing Model-Specific
COM Parameter Object Classes” on page 3-26 describe how to look at class
objects.

3-24

Example Visual Basic® GUI Using COM Objects

Because the xPC Target COM API is an add-on to Visual Basic, it might
help to know a bit about Visual Basic before going much farther with using
the COM API. The section “Creating the Graphical Interface” on page 3-27
guides you through using Visual Basic to create a project for the xpctank
or (xpc_tank1) model.

Viewing Model-Specific COM Signal Object Classes
After you create a Visual Basic project and reference the xPC Target COM
API and model-specific COM libraries, you can use the Visual Basic Object
browser (click the View menu and select Object Browser) to look at the
objects for the xpctankbio or xpc_tank1bio class:

1 From the View menu, select Object Browser.

A dialog box pops up with a drop-down list containing all the type library
information for a project.

2 Select the drop-down list for the project/library.

A list of the project libraries appears.

3-25

3 xPC Target™ COM API

3 Select model_nameCOMIFACELib.

The classes in your model appear.

4 To view the objects of a class, select that class.

The objects in your class appear.

The xpctankbio (or xpc_tank1bio) class contains the function Init and
the two properties

• water_level

• pump_valve

Viewing Model-Specific COM Parameter Object Classes
After you create a Visual Basic project and reference the xPC Target COM
API and model-specific COM libraries, you can use the Visual Basic Object
browser (click the View menu and select Object Browser) to look at the
objects for the xpctankpt or xpc_tank1pt class:

1 From the View menu, select Object Browser.

A dialog box pops up with a drop-down list containing all the type library
information for a project.

2 Select the drop-down list for the project/library.

A list of the project libraries appears.

3 Select model_nameCOMIFACELib.

The classes in your model appear.

4 To view the objects of a class, select that class.

The objects in your class appear.

The xpctankpt (or xpc_tank1pt) class contains the method Init and the
member properties

3-26

Example Visual Basic® GUI Using COM Objects

• pump_switch

• upper_water_level

• lower_water_level

• pump_flowrate

• water_level

• drain_valve

Creating the Graphical Interface
Forms are the foundation for creating the interface of a Visual Basic
application. You can use forms to add windows and dialog boxes to your Visual
Basic application. You can also use them as containers for items that are not
a visible part of the application’s interface. For example, you might have a
form in your application that holds a timer object.

The first step in building a Visual Basic application is to create the forms that
are the basis for your application’s interface. Then you create the objects that
make up the interface on the forms. This section assumes that you have a
Visual Basic project (see “Creating a New Microsoft® Visual Basic® Project”
on page 3-21). For this first application, you will use four types of controls
from the toolbox:

• Button

• Timer

• Label

• Scrollbar

1 Open xpc_tank1_COM.vbp.

2 On the left, from the General tool panel, click and drag the Button icon

to the form to create a button.

3 Repeat for a second button.

4 If you want to view signal data on the host, return to the General tool

panel and click and drag the Timer icon to the form to create a timer.

3-27

3 xPC Target™ COM API

5 If you want to view signal data on the host, add a Label control to the form.
Return to the General tool panel and click and drag the Label icon to
the form to create a label.

6 If you want to be able to vary the parameter input to the target, return
to the General tool panel and click and drag the HScrollBar icon
to the form.

7 Next, name your new form objects. Right-click the first button and select
Properties. This brings up the Properties dialog box. In the Caption box,
enter Load. Repeat for the second button, but enter Start. Repeat for
the third button, but enter Stop. (If you are unsure about how to work
with properties, refer to the procedure “Setting Properties” on page 3-29.)
After you name your new form objects and set whatever other parameters
you want (for example, if you use a timer you must increase the Interval
parameter), you can write the code behind these objects using the Visual
Basic code editor window (refer to “Writing Code” on page 3-31).

If you added a scroll bar to your project, it should look similar to the figure
below.

3-28

Example Visual Basic® GUI Using COM Objects

If you added a timer and label to your project, it should look similar to
the figure below.

Note If you add a timer, remember to increase the interval of the timer to a
value greater than the default value of 0. Right-click the timer and select
Properties. This brings up the Properties dialog box. In the Interval box,
enter a value greater than 0, for example, 100.

Setting Properties
This procedure describes how to set properties for the Visual Basic objects you
created on your form. If you already know how to set properties for Visual
Basic objects, proceed to “Writing Code” on page 3-31.

3-29

3 xPC Target™ COM API

The Properties window in the following figure provides an easy way to
set properties for all objects on a form. To open the Properties window,
choose the Properties Window command from the View menu, click the
Properties Window button on the toolbar, or use the context menu for the
control.

The Properties window consists of the following elements:

• Object box — Displays the name of the object for which you can set
properties. Click the arrow to the right of the object box to display the
list of objects for the current form.

3-30

Example Visual Basic® GUI Using COM Objects

• Sort tabs — Choose an alphabetic listing of properties or a hierarchical
view divided by logical categories, such as those dealing with appearance,
fonts, or position.

• Properties list — The left column displays all the properties for the selected
object. You can edit and view settings in the right column.

To set properties from the Properties window,

1 From the View menu, choose Properties, or click the Properties button
on the toolbar.

The Properties window displays the settings for the selected form or
control.

2 From the properties list, select the name of a property.

3 In the right column, type or select the new property setting.

Enumerated properties have a predefined list of settings. You can display
the list by clicking the down arrow at the right of the settings box, or you
can cycle through the list by double-clicking a list item.

You can also set object properties directly in the code by using the following
dot notation: Object.propertyname=value.

Writing Code
The code editor window is where you write Visual Basic code for your
application. Code consists of language statements, constants, and
declarations. Using the code editor window, you can quickly view and edit
any of the code in your application.

The code editor window has three panes. The top leftmost pane is the object
list box. It is a dropdown list that contains all the form controls in your
project, plus a general section for generic declarations. The top rightmost
pane contains a procedure list box. For the selected or active control in the
object list box, the procedure list box displays the available procedures, or
events. Visual Basic predefines the possible procedures. The third pane
contains the code for the Visual Basic application. See the following figure for
a sample code editor window.

3-31

3 xPC Target™ COM API

In the general declarations section, declare a reference to the xPC Target
COM objects that you are using to interface with the xPC Target objects. The
following are the objects you need to declare:

• xPCProtocol — Reference the classes corresponding to the target PC
running the target application and initialize the xPC Target API dynamic
link library. At a minimum, you must declare this object.

• xPCTarget — Reference the classes for interfacing with the target
application. At a minimum, you must declare this object.

• xPCScope — If the API application requires signal data, reference the class
for interfacing with xPC Target scopes. You need to declare a scope if you
want to acquire data from scopes or display data on scopes.

• model_namept — This is the COM object for tunable model/application
parameters.

• model_namebio — This is the COM object for model/target application
signals.

3-32

Example Visual Basic® GUI Using COM Objects

Creating the General Declarations
This procedure describes how to create the general object declarations for
the xpctank (or xpc_tank1) model:

1 Double-click the form or, from the View menu, select Code.

The code editor window box opens for the control.

2 Select the General object.

3 Select Declarations in the procedure list box.

A template for the declarations procedure is now displayed in the code
editor window.

4 Enter declarations for the xPC Target COM objects you are using.

Public protocol_obj As xPCProtocol
Public target_obj As xPCTarget
Public scope_obj As xPCScopes

5 Enter declarations for the model-specific COM objects you are using.

Public parameters_obj As xpc_tank1pt
Public signals_obj As xpc_tank1bio

Creating the Load Procedure
This procedure describes how to program a load target application procedure
for the form. You might or might not want to allow users to download target
applications to the target PC. However, if you do want to allow this action,
you need to provide a control on the GUI for the user to do so. “Creating
Event Procedures to Load Applications” on page 3-36 describes how to provide
such a control.

1 In the project window, double-click the Form object.

The code editor window opens.

2 In the procedure list box, select Load.

3-33

3 xPC Target™ COM API

3 Create and initialize the objects for the Load method in the form. Note that
the following code also checks that the initialization of the protocol_obj
succeeds. If it does not succeed, an error message is returned and the
application will exit.

Private Sub Form_Load()

Set protocol_obj = New xPCProtocol

Set target_obj = New xPCTarget

Set scope_obj = New xPCScopes

Set parameters_obj = New xpc_tank1pt

Set signals_obj = New xpc_tank1bio

stat = protocol_obj.Init

If stat < 0 Then

MsgBox("Could not load api") 'We can no longer continue.

End

End If

stat = protocol_obj.RS232Connect(0, 0)

stat = target_obj.Init(protocol_obj)

stat = scope_obj.Init(protocol_obj)

stat = parameters_obj.Init(protocol_obj.Ref)

stat = signals_obj.Init(protocol_obj.Ref)

End Sub

You can add more code to the Load method. This is the minimum code
you should enter for this method.

3-34

Example Visual Basic® GUI Using COM Objects

Your code editor window should look similar to the following.

Creating Event Procedures
Code in a Visual Basic application is divided into smaller blocks called
procedures. Event procedures, such as those you create here, contain code
that mainly calls the xPC Target API component methods. For example, when
a user clicks a button, that action starts the xPC Target application.

This code is also responsible for the feedback action (such as enabling a
timer control, disabling/enabling controls) when an event occurs. An event
procedure for a control combines the control’s name (specified in the Name
property), an underscore (_), and the event name. For example, if you want
a command button named Command1 to invoke an event procedure when
it is clicked, call the procedure Command1_Click. The following procedures
illustrate how to create event procedures, using the xpctank (or xpc_tank1)
model as an example.

3-35

3 xPC Target™ COM API

Creating Event Procedures to Load Applications
This procedure describes how to program the command button Command1
to load an application to the target PC through a serial connection. Provide
a procedure like this to allow users to download target applications to the
target PC.

1 Double-click the form or, from the View menu, select Code.

2 From the object list box, select the name of an object in the active form.
(The active form is the form that currently has the focus.) For this example,
choose the command button Command1.

3 In the procedure list box, select the name of an event for the selected object.

Here, the Click procedure is already selected because it is the default
procedure for a command button.

4 To load the target application, enter the path to the target application. If
the target application is in the same folder as the API application, enter ".".
Enter the name of the target application without the extension.

stat = target_obj.LoadApp(".", "xpc_tank1")

When you are done, the contents of your code editor window should look
similar to the code below:

Private Sub Command1_Click()
stat = target_obj.LoadApp(".", "xpc_tank1")

End Sub

3-36

Example Visual Basic® GUI Using COM Objects

Creating Event Procedures to Start and Stop Applications
This procedure describes how to program the command buttons Command2
and Command3 to start and stop an application on a target PC:

1 If you are not already in the code editor window, double-click the form or,
from the View menu, select Code.

2 From the object list box, select the name of an object in the active form.
(The active form is the form that currently has the focus.) For this example,
choose the command button Command2.

3 In the procedure list box, select the name of an event for the selected object.
Here, select the Click procedure.

4 To start the target application, select the StartApp method for the
command button Command2 (this is the button you named Start).

stat = target_obj.StartApp

5 To stop the target application, select the StopApp method for the command
button Command3 (this is the button you named Stop). Be sure to select
the Click procedure in the procedure list box.

stat = target_obj.StopApp

When you are done, the contents of your code editor window should look
similar to the code below:

Private Sub Command2_Click()
stat = target_obj.StartApp

End Sub

Private Sub Command3_Click()
stat = target_obj.StopApp

End Sub

Creating Event Procedures to Vary Input Values
You can provide controls to allow users to vary the parameters of their
applications. The Scroll procedure is one way of varying input. The following
code uses the Visual Basic HScrollBar object to vary the water_level

3-37

3 xPC Target™ COM API

parameter. It takes the value from the HScrollBar object and sends that
value to the target as a parameter change.

Note This section assumes that you have tagged block parameters and
created your own model-specific COM library. Refer to “Getting Parameter
IDs with the GetParamIdx Method” on page 3-41 for a description of how to
manually perform the equivalent of using tagged parameters.

1 If you are not already in the code editor window, double-click the form or,
from the View menu, select Code.

2 From the object list box, select the name of an object in the active form.
(The active form is the form that currently has the focus.) For this example,
select the HScroll1 object.

The cursor jumps to the HScroll1 object template of the code editor window.

3 In the procedure list box, select the name of an event for the selected object.
Here, select the Scroll procedure.

4 Declare the slideVal variable as a double. The slideVal variable will
contain the value of the scrollbar.

Dim slideVal(0) As Double

5 Assign to the slideVal variable the result of CDbl. The CDbl function
reads the value of an object property. In this example, the object HScroll1
has the property slideVal(0). CDbl reads the value of HScroll1.Value
and returns that value to slideVal.

slideVal(0) = CDbl(HScroll1.Value)

6 Set the value of water_level to the scroll bar value slideVal, which is
from HScrollBar. The COM object target_obj has the method SetParam,
which has the syntax SetParam(parIdx, newparVal). The SetParam method
references parIdx from the model-specific COM object (type xpc_tank1pt).
To set the value of water_level to the scroll bar value slideVal, select
SetParam and continue typing. A list of the parameters you tagged in

3-38

Example Visual Basic® GUI Using COM Objects

the Simulink model then pops up, and you can select the parameter
water_level and continue typing.

The call to SetParam should look like the following:

stat = target_obj.SetParam(parameters_obj.water_level,
slideVal)

When you are done, the contents of your code editor window should look
similar to the code below:

Private Sub HScroll1_Scroll()
Dim slideVal(0) As Double

slideVal(0) = CDbl(HScroll1.Value)
stat = target_obj.SetParam(parameters_obj.water_level,

slideVal)
End Sub

Creating Event Procedures to Display Signal Values at the Host
You can provide controls to view signal values at the host. To do this, use a
combination of the timer and label controls. The following code uses the Visual
Basic timer control to display the water_level signal on the label control.

Note This section assumes that you have tagged signals and created your
own model-specific COM library. Refer to “Getting Signal IDs with the
GetSignalIdx Method” on page 3-43 for a description of how to manually
perform the equivalent of using tagged signals.

Before you start, check that the Timer1 Interval property is greater than 0.

1 From the object list box, select the Timer1 object.

2 Assign to the Label1.Caption object the value of the water_level signal.
The COM object target_obj has the method GetSignal(sigNum). Reference
the sigNum parameter by passing it signals_obj.water_level. The CStr
function converts the returned value to a string so that it can be displayed
on the Label1 object.

3-39

3 xPC Target™ COM API

When you are done, the contents of your code editor window should look
similar to the code below:

Private Sub Timer1_Timer()
Label1.Caption =

CStr(target_obj.GetSignal(signals_obj.water_level))
End Sub

Note Although you add both a timer and label object to the Visual Basic
application, only the label appears on the GUI itself when the Visual Basic
application is run. The timer is not visible.

Creating Unload and Termination Procedures
You should write Form Unload and Termination procedures to ensure that
users are able to stop and unload the application appropriately, and to close
the communication between the host PC and target PC.

Note Provide Form Unload and Termination procedures to ensure that the
communication channel between the host PC and target PC properly closes
between each run of the GUI application.

The Terminate procedure controls the behavior of the Visual Basic Run
menu End option. The Unload procedure controls the behavior of the Visual
Basic Close button.

1 From the object list box, select the Form object.

2 From the procedure list box, select Terminate.

3 You are going to close the connection with the target PC, so type
protocol_obj and select the Close method for that object.

protocol_obj.Close

4 From the procedure list box, select Unload.

3-40

Example Visual Basic® GUI Using COM Objects

5 Repeat step

When you are done, the contents of your code editor window should look
similar to the code below:

Private Sub Form_Terminate()
protocol_obj.Close

End Sub
Private Sub Form_Unload(Cancel As Integer)

protocol_obj.Close
End Sub

Referencing Parameters and Signals Without Using
Tags
The sample code in “Creating Event Procedures to Vary Input Values” on page
3-37 and “Creating Event Procedures to Display Signal Values at the Host”
on page 3-39 illustrates how to reference parameters that you tagged before
building the Simulink model. This section describes how to reference these
same parameters and signals from the COM API application code if you did
not opt to tag signals and parameters.

Getting Parameter IDs with the GetParamIdx Method
When working with parameters in the context of varying input values, you
use the SetParam and GetParamIdx methods. The SetParam method has
the syntax

SetParam(ByVal parIdx As Integer, ByRef newparVal As
System.Array) As Long

where parIdx is the identifier that corresponds to the parameter you want to
set. To obtain the parameter ID, parIdx, for SetParam, you need to call the
GetParamIdx method. This method has the syntax

GetParamIdx(ByVal blockName As String, ByVal paramName As
String) As Long

The following procedure describes how to obtain the appropriate GetParamIdx
block name and parameter name for the Visual Basic HScrollBar object. You
need to reference the block name and parameter from the model_namept.m
file.

3-41

3 xPC Target™ COM API

1 Open a DOS window.

2 Change the directory to the directory that contains your prebuilt model.

3 Open the file model_namept.m. For example, you can use the notepad
text editor.

notepad xpc_tank1pt.m

The editor opens for that file. If you are not in the directory in which the
xpc_tank1pt.m file resides, be sure to type the full path for xpc_tank1pt.m.

4 Search for and copy the string for the block of the parameter you want to
reference. For the xpc_tank1 example, search for the SetPoint block if you
want to reference the water level. For example,

SetPoint

5 Return to the code editor window for your project.

6 In the line that contains the call to GetParamIdx, enter the path for the
blockName variable.

7 Return to the editor window for model_namept.m.

8 Search for and copy the string for the name of the parameter you are
interested in. For example,

Value

If you do not know the name of the block parameter you are interested
in, refer to “Model and Block Parameters” of the Simulink Reference
documentation.

9 Return to the code editor window for your project.

10 In the line that contains the call to GetParamIdx, enter the path for the
paramName variable. For example,

stat = target_obj.SetParam(target_obj.GetParamIdx
("SetPoint", "Value"), slideVal)

3-42

Example Visual Basic® GUI Using COM Objects

When you are done, the contents of your code editor window should look
similar to the code below:

Private Sub HScroll1_Scroll()
Dim slideVal(0) As Double

slideVal(0) = CDbl(HScroll1.Value)
stat =

target_obj.SetParam(target_obj.GetParamIdx
("SetPoint", "Value"), slideVal)

End Sub

Note, if you want to retrieve the full block path and parameter name of a
block, use the GetParamName method. The GetParamName method returns a
variant data type object with two elements. The first element contains the full
block path, the second element contains the parameter name. The following
example illustrates how to use the GetParamName method to get the block
path and parameter name:

Dim Pname As Variant
Pname=xpc_tank1.GetParamName(GetParamIdx(Idx)
BlockPathString=CStr(Pname(0))
ParameterNameString=CStr(Pname(1))

In this example,

• Idx is the index to a parameter.

• BlockPathString contains the full block path string.

• ParameterNameString contains the parameter name string.

Getting Signal IDs with the GetSignalIdx Method
When working with signals in the context of displaying signal values, you
use the GetSignal and GetSignalIdx methods. The GetSignal method has
the syntax

GetSignal(sigNum As Long) As Double

where sigNum is the identifier that corresponds to the signal you want to set.

3-43

3 xPC Target™ COM API

To obtain the signal ID sigNum for GetSignal, you call the GetSignalIdx
method. This method has the syntax

GetSignalIdx(sigName As String) As Long

The following procedure describes how to obtain the appropriate
GetSignalIdx block name for the Visual Basic timer object. You need to
reference the block name and signal from the model_namebio.m file.

1 Open a DOS window.

2 Change the directory to the directory that contains your prebuilt model.

3 Open the file model_namebio.m. For example,

notepad xpc_tank1bio.m

The editor opens for that file. If you are not in the directory in which
the xpc_tank1bio.m file resides, be sure to type the full path for
xpc_tank1bio.m.

4 Search for and copy the string for the block of the signal you want to
reference. For the xpc_tank1 example, search for the TankLevel block to
reference the tank level. For example,

TankLevel

5 Return to the code editor window for your project.

6 In the line that contains the call to GetSignalIdx, enter the path for the
SigName variable.

When you are done, the contents of your code editor window should look
similar to the code below:

Private Sub Timer1_Timer()
Label1.Caption =

CStr(target_obj.GetSignal(target_obj.GetSignalIdx("TankLevel"
)))
End Sub

3-44

Example Visual Basic® GUI Using COM Objects

Testing the Visual Basic® Application
While creating your Visual Basic application, you might want to see how the
application is progressing. Visual Basic allows you to run your application
while still in the Visual Basic project. From the Visual Basic task bar, you can
click the Run button . Alternatively, you can follow the procedure:

1 If you have the MATLAB interface and a target object connected, close the
port. For example, at the MATLAB command line, type

tg.close

2 From within the project, go to the Run menu.

3 Select Start or Start with Full Compile. The Start option starts your
application immediately. The Start with Full Compile option starts the
application after compilation.

The form you are working on pops up. Test your application. Ensure that
only one version of the application is running at any given time. To stop the

application from within Visual Basic, you can click the End button from
the task bar. Alternatively, you can go to the Run menu and select End.

Note If your Visual Basic application opens a communication channel
between the host PC and the target PC for the target application, be sure to
close that open channel between test runs of the Visual Basic application. Not
doing so can cause subsequent runs of the Visual Basic application to fail.
“Creating Unload and Termination Procedures” on page 3-40 describes how
to write a procedure to disconnect from the target PC. If you want to return
control to the MATLAB interface, be sure to close the Visual Basic project first.

Building the Visual Basic® Application
After you finish designing, programming, and testing your Visual Basic
GUI application, build your application. You can later distribute the GUI
application to users, who can then use it to work with target applications.

1 From within the project, go to the File menu.

3-45

3 xPC Target™ COM API

2 Select Make project_name_COM.exe, where project_name is the name of
the Visual Basic project you have been working on.

3 At the pop-up box, select the directory in which you want to save the
executable. Optionally, you can also rename the executable.

The compiler generates the project_name_COM.exe file in the specified
directory.

Deploying the API Application
This section assumes that you have built your xPC Target application and
your Visual Basic xPC Target COM GUI application. If you have not yet
done so, refer to “Creating the Target Application and Model-Specific COM
Library” on page 3-14 and “Building the Visual Basic® Application” on page
3-45, respectively.

When distributing the Visual Basic model application to users, provide the
following files:

• project_name_COM.exe, the executable for the Visual Basic application

• model_name.dlm

Provide model_name.dlm if you expect the user to download the target
application to the target PC. Ensure that you have enabled an application
load event on the Visual Basic interface (refer to “Creating the Load
Procedure” on page 3-33).

If you expect that the target application is already loaded on the target PC
when the user runs the Visual Basic GUI application, you might not want
him or her to be able to load the target application to the target PC.

• model_nameCOMiface.dll, if you tag the signals and parameters in the
model

• xpcapiCOM.dll, the xPC Target COM API dynamic link library

• xpcapi.dll, the xPC Target API dynamic link library

Have the user ensure that all the files are located in the same directory before
he or she executes the Visual Basic application.

3-46

Example Visual Basic® GUI Using COM Objects

You must also ensure that the user knows how to register the
application-dependent dynamic link libraries (refer to “Registering Dependent
Dynamic Link Libraries” on page 3-47).

To run the application and download an xPC Target application, users need
to have project_name_COM.exe and model_name.dlm, if provided, in the
same directory.

Registering Dependent Dynamic Link Libraries
This procedure uses xpc_tank1 as an example.

1 Open a DOS window.

2 Change the directory to the directory containing the API application files.

3 From the directory in which xpcapiCOM.dll resides, register the xPC
Target COM API DLL by typing

regsvr32 xpcapiCOM.dll

DOS displays the message

DllRegisterServer in xpcapiCOM.dll succeeded

Creating a New Visual Basic® Project Using Microsoft®
Visual Studio® 7.1 or 8.0
The procedures for the preceding topics apply to Microsoft Visual Studio
6.0 (“Creating a New Microsoft® Visual Basic® Project” on page 3-21). The
procedures to use Microsoft Visual Studio 7.1 (.NET 2003) and 8.0 are similar,
with the following exceptions. Note that references toMicrosoft Visual Studio
7.1 or .NET 2003 also apply to Microsoft Visual Studio 8.0.

• You can open a Microsoft Visual Studio 6.0 project under Microsoft Visual
Studio .NET 2003. Microsoft Visual Studio .NET 2003 automatically
converts the project.

• If you first create a new Visual Basic project, select Windows Application
as the template.

• When referencing the xPC Target COM API and model-specific COM
libraries, do the following

3-47

3 xPC Target™ COM API

a From the Project menu, click Add Reference.

The Add Reference dialog box opens.

b Select the COM tab.

c Scroll down the Component Name list to the bottom and select the
xPC Target API COM Type Library item.

d Click Select.

xPC Target API COM Type Library appears in the Selected
Components pane.

e Click OK.

• When creating a reference to the xPC Target interface objects, include the
COM library. The following illustrates example code on how to reference
these objects in Microsoft Visual Studio .NET 2003 and Microsoft Visual
Studio6.0:

Microsoft Visual Studio .NET 2003

Public protocol_obj As XPCAPICOMLib.xPCProtocol
Public target_obj As XPCAPICOMLib.xPCTarget
Public scope_obj As XPCAPICOMLib.xPCScopes

Microsoft Visual Studio 6.0

Public protocol_obj As xPCProtocol
Public target_obj As xPCTarget
Public scope_obj As xPCScopes

• When creating an instance of the xPC Target interface objects, include
the COM library. The following illustrates example code on how to create
an instance of these objects in Microsoft Visual Studio .NET 2003 and
Microsoft Visual Studio 6.0:

Microsoft Visual Studio .NET 2003

protocol_obj = New XPCAPICOMLib.xPCProtocol
target_obj = New XPCAPICOMLib.xPCTarget
scope_obj = New XPCAPICOMLib.xPCScopes

3-48

Example Visual Basic® GUI Using COM Objects

Microsoft Visual Studio 6.0:

Set protocol_obj = New xPCProtocol
Set target_obj = New xPCTarget
Set scope_obj = New xPCScopes

• Microsoft Visual Studio .NET 2003 builds applications into the bin
directory of your project area. You cannot choose another location to place
your executable.

• When distributing the Visual Basic model application to users, provide the
following files in addition to those listed in “Deploying the API Application”
on page 3-46:

- Interop.model_nameACOMIFACELib.dll

- Interop.XPCAPICOMLib.dll

3-49

3 xPC Target™ COM API

3-50

4

xPC Target™ COM API
Demos and Scripts

Microsoft® Visual Basic® 7.1 (.NET
2003) Demo (p. 4-2)

The Microsoft® Visual Basic® .NET
2003 demo illustrates how to create
a generic custom GUI that connects
to a target PC with any downloaded
target application.

Microsoft® Visual Basic® 6.0 Demo
(p. 4-5)

The Microsoft Visual Basic 6.0
sf_car_xpc demo illustrates how to
create a custom GUI that connects
to a target PC that has a specific
(sf_car_xpc) downloaded target
application.

Tcl/Tk Scripts (p. 4-8) The Tcl/Tk demos are scripts that
illustrate how to directly access
COM API functions through a
command-line interpreter like
Tcl/Tk.

4 xPC Target™ COM API Demos and Scripts

Microsoft® Visual Basic® 7.1 (.NET 2003) Demo

In this section...

“Introduction” on page 4-2

“Before Starting” on page 4-3

“Accessing the Demo Project Solution” on page 4-3

“Rebuilding the Demo Project Solution” on page 4-4

“Using the Demo Executable” on page 4-4

Introduction
To help you better understand and quickly begin to use COM API
functions to create custom GUI applications, the xPC Target™
environment provides a number of API demos and scripts in the
C:\matlabroot\toolbox\rtw\targets\xpc\api directory. This topic briefly
describes those demos and scripts.

The Microsoft® Visual Basic® .NET 2003 demo illustrates how to create
a custom GUI that connects to a target PC with a downloaded target
application. The solution file for this demo is located in

C:\matlabroot\toolbox\rtw\targets\xpc\api\VBNET\SigsAndParamsDemo

• bin — Contains the executable for the demo project and the xpcapi.dll file

• Demo.sln — Contains a solution file for the Demo project

The Demo.sln file contains all the Visual Basic® .NET 2003 files to run the
windows form application. This demo is a functional application that you can
use as a template to create your own custom GUIs.

The COM API example from “Example Visual Basic® GUI Using COM
Objects” on page 3-4 is a simple GUI that illustrates some basic concepts for
creating a GUI with the COM API. The Demo solution is a more advanced
example that illustrates how to create a GUI similar to the xPC Target
Explorer. The Demo solution is fully commented.

4-2

Microsoft® Visual Basic® 7.1 (.NET 2003) Demo

This demo illustrates how you can use the COM API to create a GUI that

• Connects to the target PC via an RS-232 or TCP/IP connection

• Starts and stops the target application loaded on the target PC

• Retrieves and lists all the signals in the target application

• Displays the value of a selected signal

• Retrieves and lists all the parameters in the target application

• Change the values of the parameters

Before Starting
To use the Demo solution, you need

• A target PC running a current xPC Target kernel

• A host PC running the MATLAB® software interface, connected to the
target PC via RS-232 or TCP/IP

• A target application loaded on the target PC

The xPC Target product ships with an executable version of the demo. If you
want to rebuild the Demo solution, of if you want to write your own custom
GUIs like this one, you need Microsoft Visual Basic .NET 2003 installed on
the host PC.

Note The xPC Target software allows you to create applications, such as
GUIs, to interact with a target PC with COM API functions. Chapter 3, “xPC
Target™ COM API” describes this in detail. To deploy a GUI application to
other host PC systems that do not have your licensed copy of the xPC Target
product, you need the xPC Target Embedded Option™. If you do not have the
xPC Target Embedded Option and would like to deploy your GUI application,
contact your MathWorks™ representative.

Accessing the Demo Project Solution
To access the Demo solution,

4-3

4 xPC Target™ COM API Demos and Scripts

1 Copy the contents of the VBNET directory to a writable directory of your
choice.

2 Change directory to the one that contains your copy of the Demo solution.

3 Double-click demo.sln.

The Microsoft® Development Environment for Visual Basic application
starts.

4 In the Solution Explorer pane, double-click Form1.vb to display the
Demo solution form.

The form is displayed. You can inspect the layout of the demo.

5 To inspect the form code, select the View menu Code option.

The Visual Basic code for the form is displayed.

Rebuilding the Demo Project Solution
To rebuild the Demo solution,

1 Double-click demo.sln.

The Microsoft Development Environment for Visual Basic application
starts.

2 Select the Build menu Build Solution option.

Using the Demo Executable
To use the Demo solution executable,

1 Change directory to the one that contains your copy of the Demo solution.

2 Change directory to the bin directory.

3 Double-click Demo1.exe.

The GUI is displayed.

4-4

Microsoft® Visual Basic® 6.0 Demo

Microsoft® Visual Basic® 6.0 Demo

In this section...

“Introduction” on page 4-5

“Before Starting” on page 4-6

“Accessing the sf_car_xpc Project” on page 4-6

“Rebuilding the sf_car_xpc Project” on page 4-7

“Using the sf_car_xpc Executable” on page 4-7

Introduction
The Microsoft® Visual Basic® 6.0 sf_car_xpc demo illustrates how to create a
custom GUI that connects to a target PC. The files for this demo are located in

C:\matlabroot\toolbox\rtw\targets\xpc\api\VisualBasicModels\sf_car_xpc

This application interfaces with the xPC Target™ application
sf_car_xpc.dlm, built from the Simulink® model sf_car_xpc.mdl. This
model simulates an automatic transmission control system composed of
modules that represent the engine, transmission, and vehicle, with an
additional logic block to control the transmission ratio. User inputs to the
model are in the form of throttle (%) and brake torque (ft-lb).

This demo illustrates how you can use the COM API to create a GUI that

• Connects to the target PC via an RS-232 or TCP/IP connection

• Loads the sf_car_xpc.dlm target application to the target PC

• Starts and starts the target application engine

• Edits the stop time of the target application

• Edits the sample time of the target application

• Displays the speed, RPM, and gear of the target application engine

4-5

4 xPC Target™ COM API Demos and Scripts

Note For detailed information on the project, see the readme.txt file located
in C:\matlabroot\toolbox\rtw\targets\xpc\api\VisualBasic\Models\
sf_car_xpc.

Before Starting
To use the sf_car_xpc project, you need

• A target PC running a current xPC Target kernel

• A host PC running the MATLAB®interface, connected to the target PC
via RS-232 or TCP/IP

The xPC Target product ships with an executable version of the sf_car_xpc
project. If you want to rebuild the sf_car_xpc project, you need Microsoft
Visual Basic 6.0 Professional installed on the host PC. If you want to view
or edit the model, you need to have the Stateflow® product installed on the
host PC.

Note The xPC Target environment allows you to create applications, such as
GUIs, to interact with a target PC with COM API functions. Chapter 3, “xPC
Target™ COM API” describes this in detail. To deploy a GUI application to
other host PC systems that do not have your licensed copy of the xPC Target
product, you need the xPC Target Embedded Option™ license. If you do not
have the xPC Target Embedded Option license and would like to deploy your
GUI application, contact your MATLAB representative.

Accessing the sf_car_xpc Project
To access the sf_car_xpc project,

1 Copy the contents of the VisualBasic directory to a writable directory of
your choice.

2 Change directory to the one that contains your copy of the sf_car_xpc
project.

4-6

Microsoft® Visual Basic® 6.0 Demo

3 Double-click the Visual Basic® project. For example, double-click
sf_car_xpc_COM.vbp.

The Microsoft Visual Basic application starts.

4 In the right Project pane, expand the Forms folder.

5 Double-click the form you want to look at.

The form is displayed. You can inspect the layout of it.

6 To inspect the form code, select the View menu Code option.

The Visual Basic code for the form is displayed.

Rebuilding the sf_car_xpc Project
To rebuild the sf_car_xpc project,

1 Double-click the Visual Basic project. For example, double-click
sf_car_xpc_COM.vbp.

The Microsoft Visual Basic application starts.

2 Select the File menu Make sf_car_xpc.exe.

Using the sf_car_xpc Executable
To use the sf_car_xpc project executable,

1 Change directory to the one that contains your copy of the sf_car_xpc
project.

2 Change directory to the bin directory.

3 Double-click sf_car_xpc.exe.

The GUI is displayed.

4-7

4 xPC Target™ COM API Demos and Scripts

Tcl/Tk Scripts

In this section...

“Introduction” on page 4-8

“Required Tcl/Tk Software” on page 4-9

“Using the Demo Scripts” on page 4-9

Introduction
The Tcl/Tk demos are scripts that illustrate how to directly access xPC
Target™ COM API functions through a command-line interpreter like Tcl/Tk.
With Tcl/Tk

• You can write simple command-line scripts that communicate with a target
PC and the target application downloaded on that target PC.

• You can write simple GUIs that you can use to interact with a target
application downloaded on a target PC.

The files for this scripts are located in

C:\matlabroot\toolbox\rtw\targets\xpc\api\tcltk

• xpcapi.dll — The xPC Target API DLL file. This file must be in the
current (pwd) directory. Alternatively, you can copy the file xpcapi.dll
into the Windows® system directory.

• xpcbase.tcl — Contains utility procedures used by the other scripts in
the series

• xpclists.tcl — Generates a list of signals or parameters for the target
application currently loaded on the target PC

• xpcload.tcl — Loads the specified target application to the connected
target PC

• xpcoutputlog.tcl — Reads log data from the target PC and plots the
data on the host PC

• xpcstart.tcl — Starts the target application loaded on the target PC

4-8

Tcl/Tk Scripts

• xpcstop.tcl — Stops the target application loaded on the target PC

• xpctargetping.tcl — Tests the communication between the host and
target PCs

• xpctargetscope.tcl — Creates a simple GUI that enables you to add
and control a scope of type target

• xpctune.tcl — Creates a simple GUI slider that enables you to manipulate
a parameter value for the target PC application

Required Tcl/Tk Software
To use these Tcl/Tk scripts, or to write your own Tcl/Tk scripts, you need

• An installation of a Tcl/Tk distribution on the host PC.

• An add-on package to the Tcl/Tk interpreter so that the scripts can
access the COM API objects. The tcom package is recommended.
This package was used to create the demo scripts in the
C:\matlabroot\toolbox\rtw\targets\tcltk directory.

• The math::statistics package. This package is required for the
xpcoutputlog.tcl file.

Note There are Tcl/Tk distributions that include required and useful
packages for use with the xPC Target software. For example, the Tcl/Tk
distribution at http://www.activestate.com contains these packages.

Using the Demo Scripts
The top of each Tcl/Tk script file contains directions on how to use each Tcl/Tk
scripts. In general:

1 Copy the contents of the tcltk directory to a writable directory of your
choice.

2 Change directory to the one that contains your copy of the Tcl/Tk script files.

3 Start your Tcl/Tk interpreter.

4 Load the Tcl/Tk script with the source command. For example,

4-9

http://www.activestate.com

4 xPC Target™ COM API Demos and Scripts

source xpctargetping.tcl

5 Run the loaded script. For example,

xpctargetping 192.168.0.10 22222

The selected script executes. In this example, xpctargetping.tcl tests
the communication between the host and target PC and returns a success
or failure message.

4-10

5

API Function and Method
Reference

C API Functions (p. 5-2) Program with C API functions

COM API Methods (p. 5-10) Program with COM API methods

5 API Function and Method Reference

C API Functions

Logging, Scope, and File System
Structures (p. 5-2)

Data structures for data logging and
scopes

Communications Functions (p. 5-3) Communicate between host and
target PCs

Target Application Functions (p. 5-3) Manipulate target applications

Data Logging Functions (p. 5-4) Log data

Scope Functions (p. 5-5) Manipulate scopes

File System Functions (p. 5-7) Manipulate file systems

Target Scope Functions (p. 5-8) Manipulate scopes of type target

Monitoring and Tuning Functions
(p. 5-8)

Monitor and tune parameters and
signals

Miscellaneous Functions (p. 5-9) Manipulate miscellaneous xPC
Target components

Logging, Scope, and File System Structures

dirStruct Type definition for file system
directory information structure

diskinfo Type definition for file system disk
information structure

lgmode Type definition for logging options
structure

scopedata Type definition for scope data
structure

5-2

C API Functions

Communications Functions

xPCCloseConnection Close RS-232 or TCP/IP
communication connection

xPCClosePort Close RS-232 or TCP/IP
communication connection

xPCDeRegisterTarget Delete target communication
properties from xPC Target™ API
library

xPCGetLoadTimeOut Return timeout value for
communication between host
PC and target PC

xPCOpenConnection Open connection to target PC

xPCOpenSerialPort Open RS-232 connection to xPC
Target system

xPCOpenTcpIpPort Open TCP/IP connection to xPC
Target system

xPCReboot Reboot target PC

xPCRegisterTarget Register target with xPC Target API
library

xPCReOpenPort Reopen communication channel

xPCSetLoadTimeOut Change initialization timeout value
between host PC and target PC

xPCTargetPing Ping target PC

Target Application Functions

xPCAverageTET Return average task execution time

xPCGetAPIVersion Get version number of xPC Target
API

xPCGetAppName Return target application name

5-3

5 API Function and Method Reference

xPCGetExecTime Return target application execution
time

xPCGetSampleTime Return target application sample
time

xPCGetStopTime Return stop time

xPCGetTargetVersion Get xPC Target kernel version

xPCIsAppRunning Return target application running
status

xPCIsOverloaded Return target PC overload status

xPCLoadApp Load target application onto target
PC

xPCLoadParamSet Restore parameter values

xPCMaximumTET Copy maximum task execution time
to array

xPCMinimumTET Copy minimum task execution time
to array

xPCSaveParamSet Save parameter values of target
application

xPCSetSampleTime Change target application sample
time

xPCSetStopTime Change target application stop time

xPCStartApp Start target application

xPCStopApp Stop target application

xPCUnloadApp Unload target application

Data Logging Functions

xPCGetLogMode Return logging mode and increment
value for target application

xPCGetNumOutputs Return number of outputs

5-4

C API Functions

xPCGetNumStates Return number of states

xPCGetOutputLog Copy output log data to array

xPCGetStateLog Copy state log values to array

xPCGetTETLog Copy TET log to array

xPCGetTimeLog Copy time log to array

xPCMaxLogSamples Return maximum number of samples
that can be in log buffer

xPCNumLogSamples Return number of samples in log
buffer

xPCNumLogWraps Return number of times log buffer
wraps

xPCSetLogMode Set logging mode and increment
value of scope

Scope Functions

xPCAddScope Create new scope

xPCGetScope Get and copy scope data to structure

xPCGetScopes Get and copy list of scope numbers

xPCIsScFinished Return data acquisition status for
scope

xPCRemScope Remove scope

xPCScAddSignal Add signal to scope

xPCScGetData Copy scope data to array

xPCScGetDecimation Return decimation of scope

xPCScGetNumPrePostSamples Get number of pre- or posttriggering
samples before triggering scope

xPCScGetNumSamples Get number of samples in one data
acquisition cycle

xPCScGetSignals Copy list of signals to array

5-5

5 API Function and Method Reference

xPCScGetStartTime Get start time for last data
acquisition cycle

xPCScGetState Get state of scope

xPCScGetTriggerLevel Get trigger level for scope

xPCScGetTriggerMode Get trigger mode for scope

xPCScGetTriggerScope Get trigger scope

xPCScGetTriggerScopeSample Get sample number for triggering
scope

xPCScGetTriggerSignal Get trigger signal for scope

xPCScGetTriggerSlope Get trigger slope for scope

xPCScGetType Get type of scope

xPCScRemSignal Remove signal from scope

xPCScSetDecimation Set decimation of scope

xPCScSetNumPrePostSamples Set number of pre- or posttriggering
samples before triggering scope

xPCScSetNumSamples Set number of samples in one data
acquisition cycle

xPCScSetTriggerLevel Set trigger level for scope

xPCScSetTriggerMode Set trigger mode of scope

xPCScSetTriggerScope Select scope to trigger another scope

xPCScSetTriggerScopeSample Set sample number for triggering
scope

xPCScSetTriggerSignal Select signal to trigger scope

xPCScSetTriggerSlope Set slope of signal that triggers scope

xPCScSoftwareTrigger Set software trigger of scope

xPCScStart Start data acquisition for scope

xPCScStop Stop data acquisition for scope

xPCSetScope Set properties of scope

5-6

C API Functions

File System Functions

xPCFSCD Change current directory on target
PC to specified path

xPCFSCloseFile Close file on target PC

xPCFSDir Get contents of specified directory on
target PC

xPCFSDirItems Get contents of specified directory on
target PC

xPCFSDirSize Return size of specified directory on
target PC

xPCFSDirStructSize Get number of items in directory

xPCFSDiskInfo Information about target PC file
system

xPCFSGetError Get text description for error number
on target PC file system

xPCFSGetFileSize Return size of file on target PC

xPCFSGetPWD Get current directory of target PC

xPCFSOpenFile Open file on target PC

xPCFSReadFile Read open file on target PC

xPCFSRemoveFile Remove file from target PC

xPCFSRMDIR Remove directory from target PC

xPCFSScGetFilename Get name of file for scope

xPCFSScGetWriteMode Get write mode of file for scope

xPCFSScGetWriteSize Get block write size of data chunks

xPCFSScSetFilename Specify name for file to contain
signal data

xPCFSScSetWriteMode Specify when file allocation table
entry is updated

5-7

5 API Function and Method Reference

xPCFSScSetWriteSize Specify that memory buffer collect
data in multiples of write size

xPCFSWriteFile Write to file on target PC

Target Scope Functions

xPCTgScGetGrid Get status of grid line for particular
scope

xPCTgScGetMode Get scope mode for displaying signals

xPCTgScGetViewMode Get view mode for target PC display

xPCTgScGetYLimits Copy y-axis limits for scope to array

xPCTgScSetGrid Set grid mode for scope

xPCTgScSetMode Set display mode for scope

xPCTgScSetViewMode Set view mode for scope

xPCTgScSetYLimits Set y-axis limits for scope

Monitoring and Tuning Functions

xPCGetNumParams Return number of tunable
parameters

xPCGetNumSignals Return number of signals

xPCGetParam Get parameter value and copy it to
array

xPCGetParamDims Get row and column dimensions of
parameter

xPCGetParamIdx Return parameter index

xPCGetParamName Get name of parameter

xPCGetSigIdxfromLabel Return array of signal indices

xPCGetSigLabelWidth Return number of elements in signal

xPCGetSignal Return value of signal

5-8

C API Functions

xPCGetSignalIdx Return index for signal

xPCGetSignalName Copy name of signal to character
array

xPCGetSignals Return vector of signal values

xPCGetSignalWidth Return width of signal

xPCSetParam Change value of parameter

Miscellaneous Functions

xPCErrorMsg Return text description for error
message

xPCFreeAPI Unload xPC Target DLL

xPCGetEcho Return display mode for target
message window

xPCGetLastError Return constant of last error

xPCInitAPI Initialize xPC Target DLL

xPCSetEcho Turn message display on or off

xPCSetLastError Set last error to specific string
constant

5-9

5 API Function and Method Reference

COM API Methods

Communication Objects
(xPCProtocol) (p. 5-10)

Work with COM API communication
objects

Scope Objects (xPCScopes) (p. 5-11) Work with COM API scope objects

Target Objects (xPCTarget) (p. 5-13) Work with COM API Target objects

File System Objects (xPCFileSystem)
(p. 5-15)

Work with COM API file system
objects

Communication Objects (xPCProtocol)

xPCProtocol.Close Close RS-232 or TCP/IP
communication connection

xPCProtocol.GetLoadTimeOut Return current timeout value for
target application initialization

xPCProtocol.GetxPCErrorMsg Return error string

xPCProtocol.Init Initialize xPC Target™ API DLL

xPCProtocol.isxPCError Return error status

xPCProtocol.Port Contain communication channel
index

xPCProtocol.Reboot Reboot target PC

xPCProtocol.RS232Connect Open RS-232 connection to target PC

xPCProtocol.SetLoadTimeOut Change initialization timeout value

xPCProtocol.TargetPing Ping target PC

xPCProtocol.TcpIpConnect Open TCP/IP connection to target
PC

xPCProtocol.Term Unload xPC Target API DLL from
memory

5-10

COM API Methods

Scope Objects (xPCScopes)

xPCScopes.AddFileScope Create new scope of type file

xPCScopes.AddHostScope Create new scope of type host

xPCScopes.AddTargetScope Create new scope of type target

xPCScopes.GetScopes Get and copy list of scope numbers

xPCScopes.GetxPCError Get error string

xPCScopes.Init Initialize scope object to
communicate with target PC

xPCScopes.IsScopeFinished Get data acquisition status for scope

xPCScopes.isxPCError Get error status

xPCScopes.RemScope Remove scope

xPCScopes.ScopeAddSignal Add signal to scope

xPCScopes.ScopeGetData Copy scope data to array

xPCScopes.ScopeGetDecimation Get decimation of scope

xPCScopes.ScopeGetNumPrePost-
Samples

Get number of pre- or posttriggering
samples before triggering scope

xPCScopes.ScopeGetNumSamples Get number of samples in one data
acquisition cycle

xPCScopes.ScopeGetSignals Get list of signals

xPCScopes.ScopeGetStartTime Get last data acquisition cycle start
time

xPCScopes.ScopeGetState Get state of scope

xPCScopes.ScopeGetTriggerLevel Get trigger level for scope

xPCScopes.ScopeGetTriggerMode Get trigger mode for scope

xPCScopes.ScopeGetTriggerModeStr Get trigger mode as string

xPCScopes.ScopeGetTriggerSample Get sample number for triggering
scope

xPCScopes.ScopeGetTriggerSignal Get trigger signal for scope

5-11

5 API Function and Method Reference

xPCScopes.ScopeGetTriggerSlope Get trigger slope for scope

xPCScopes.ScopeGetTriggerSlope-
Str

Get trigger slope as string

xPCScopes.ScopeGetType Get type of scope

xPCScopes.ScopeRemSignal Remove signal from scope

xPCScopes.ScopeSetDecimation Set decimation of scope

xPCScopes.ScopeSetNumPrePost-
Samples

Set number of pre- or posttriggering
samples before triggering scope

xPCScopes.ScopeSetNumSamples Set number of samples in one data
acquisition cycle

xPCScopes.ScopeSetTriggerLevel Set trigger level for scope

xPCScopes.ScopeSetTriggerMode Set trigger mode of scope

xPCScopes.ScopeSetTriggerSample Set sample number for triggering
scope

xPCScopes.ScopeSetTriggerSignal Select signal to trigger scope

xPCScopes.ScopeSetTriggerSlope Set slope of signal that triggers scope

xPCScopes.ScopeSoftwareTrigger Set software trigger of scope

xPCScopes.ScopeStart Start data acquisition for scope

xPCScopes.ScopeStop Stop data acquisition for scope

xPCScopes.TargetScopeGetGrid Get status of grid line for particular
scope

xPCScopes.TargetScopeGetMode Get scope mode for displaying signals

xPCScopes.TargetScopeGetModeStr Get scope mode string for displaying
signals

xPCScopes.TargetScopeGetViewMode Get view mode for target PC display

xPCScopes.TargetScopeGetYLimits Get y-axis limits for scope

xPCScopes.TargetScopeSetGrid Set grid mode for scope

xPCScopes.TargetScopeSetMode Set display mode for scope

5-12

COM API Methods

xPCScopes.TargetScopeSetViewMode Set view mode for scope

xPCScopes.TargetScopeSetYLimits Set y-axis limits for scope

Target Objects (xPCTarget)

xPCTarget.AverageTET Get average task execution time

xPCTarget.GetAppName Get target application name

xPCTarget.GetExecTime Get execution time for target
application

xPCTarget.GetNumOutputs Get number of outputs

xPCTarget.GetNumParams Get number of tunable parameters

xPCTarget.GetNumSignals Get number of signals

xPCTarget.GetNumStates Get number of states

xPCTarget.GetOutputLog Copy output log data to array

xPCTarget.GetParam Get parameter values

xPCTarget.GetParamDims Get row and column dimensions of
parameter

xPCTarget.GetParamIdx Get parameter index

xPCTarget.GetParamName Get parameter name

xPCTarget.GetSampleTime Get sample time

xPCTarget.GetSignal Get signal value

xPCTarget.GetSignalidsfromLabel Get signal IDs from signal label

xPCTarget.GetSignalIdx Get signal index

xPCTarget.GetSignalLabel Get signal label

xPCTarget.GetSignalName Copy signal name to character array

xPCTarget.GetSignalWidth Get width of signal

xPCTarget.GetStateLog Get state log

xPCTarget.GetStopTime Get stop time

5-13

5 API Function and Method Reference

xPCTarget.GetTETLog Get TET log

xPCTarget.GetTimeLog Get time log

xPCTarget.GetxPCError Get error string

xPCTarget.Init Initialize target object to
communicate with target PC

xPCTarget.IsAppRunning Return running status for target
application

xPCTarget.IsOverloaded Return overload status for target PC

xPCTarget.isxPCError Return error status

xPCTarget.LoadApp Load target application onto target
PC

xPCTarget.MaximumTET Copy maximum task execution time
to array

xPCTarget.MaxLogSamples Return maximum number of samples
that can be in log buffer

xPCTarget.MinimumTET Copy minimum task execution time
to array

xPCTarget.NumLogSamples Return number of samples in log
buffer

xPCTarget.NumLogWraps Return number of times log buffer
wraps

xPCTarget.SetParam Change parameter value

xPCTarget.SetSampleTime Change sample time for target
application

xPCTarget.SetStopTime Change stop time of target
application

xPCTarget.StartApp Start target application

xPCTarget.StopApp Stop target application

xPCTarget.UnLoadApp Unload target application

5-14

COM API Methods

File System Objects (xPCFileSystem)

FSDir Type definition for file system
directory information structure

FSDiskInfo Type definition for file system disk
information structure

xPCFileSystem.CD Change current directory on target
PC to specified path

xPCFileSystem.CloseFile Close file on target PC

xPCFileSystem.DirList Return contents of target PC
directory

xPCFileSystem.GetDiskInfo Return disk information

xPCFileSystem.GetFileSize Return size of file on target PC

xPCFileSystem.Init Initialize file system object to
communicate with target PC

xPCFileSystem.MKDIR Create directory on target PC

xPCFileSystem.OpenFile Open file on target PC

xPCFileSystem.PWD Get current directory of target PC

xPCFileSystem.ReadFile Read open file on target PC

xPCFileSystem.RemoveFile Remove file from target PC

xPCFileSystem.RMDIR Remove directory from target PC

xPCFileSystem.ScGetFileName Get name of file for scope

xPCFileSystem.ScGetWriteMode Get write mode of file for scope

xPCFileSystem.ScGetWriteSize Get block write size of data chunks

xPCFileSystem.ScSetFileName Specify file name to contain signal
data

xPCFileSystem.ScSetWriteMode Specify when file allocation table
entry is updated

5-15

5 API Function and Method Reference

xPCFileSystem.ScSetWriteSize Specify that memory buffer collect
data in multiples of write size

xPCFileSystem.WriteFile Write to file on target PC

5-16

6

API Functions and Methods

dirStruct

Purpose Type definition for file system directory information structure

Prototype typedef struct {
char Name[8];
char Ext[3];
char Day;
int Month;
int Year;
int Hour;
int Min;
int isDir;
unsigned long Size;

} dirStruct;

Arguments Name This value contains the name of the file or
directory.

Ext This value contains the file type of the
element, if the element is a file (isDir is 0).
If the element is a directory (isDir is 1), this
field is empty.

Day This value contains the day the file or
directory was last modified.

Month This value contains the month the file or
directory was last modified.

Year This value contains the year the file or
directory was last modified.

Hour This value contains the hour the file or
directory was last modified.

Min This value contains the minute the file or
directory was last modified.

6-2

dirStruct

isDir This value indicates if the element is a file
(0) or directory (1). If it is a directory, Bytes
has a value of 0.

Size This value contains the size of the file in
bytes. If the element is a directory, this value
is 0.

Description The dirStruct structure contains information for a directory in the
file system.

See Also API function xPCFSDirItems

6-3

diskinfo

Purpose Type definition for file system disk information structure

Prototype typedef struct {
char Label[12];
char DriveLetter;
char Reserved[3];
unsigned int SerialNumber;
unsigned int FirstPhysicalSector;
unsigned int FATType;
unsigned int FATCount;
unsigned int MaxDirEntries;
unsigned int BytesPerSector;
unsigned int SectorsPerCluster;
unsigned int TotalClusters;
unsigned int BadClusters;
unsigned int FreeClusters;
unsigned int Files;
unsigned int FileChains;
unsigned int FreeChains;
unsigned int LargestFreeChain;

} diskinfo;

Arguments Label This value contains the zero-terminated
string that contains the volume label. The
string is empty if the volume has no label.

DriveLetter This value contains the drive letter, in
uppercase.

Reserved Reserved.

SerialNumber This value contains the volume serial number.

FirstPhysicalSector This value contains the logical block
addressing (LBA) address of the logical drive
boot record. For 3.5-inch disks, this value is 0.

6-4

diskinfo

FATType This value contains the type of file system
found. It can contain 12 , 16 , or 32 for FAT-12,
FAT-16, or FAT-32 volumes, respectively.

FATCount This value contains the number of FAT
partitions on the volume.

MaxDirEntries This value contains the size of the root
directory. For FAT-32 systems, this value is 0.

BytesPerSector This value contains the sector size. This
value is most likely to be 512.

SectorsPerCluster This value contains, in sectors, the size of the
smallest unit of storage that can be allocated
to a file.

TotalClusters This value contains the number of file storage
clusters on the volume.

BadClusters This value contains the number of clusters
that have been marked as bad. These clusters
are unavailable for file storage.

FreeClusters This value contains the number of clusters
that are currently available for storage.

Files This value contains the number of files,
including directories, on the volume. This
number excludes the root directory and files
that have an allocated file size of 0.

FileChains This value contains the number of contiguous
cluster chains. On a completely unfragmented
volume, this value is identical to the value
of Files.

6-5

diskinfo

FreeChains This value contains the number of contiguous
cluster chains of free clusters. On a
completely unfragmented volume, this value
is 1.

LargestFreeChain This value contains the maximum allocated
file size, in number of clusters, for a newly
allocated contiguous file. On a completely
unfragmented volume, this value is identical
to FreeClusters.

Description The diskinfo structure contains information for file system disks.

See Also API function xPCFSDiskInfo

6-6

FSDir

Purpose Type definition for file system directory information structure

Prototype typedef struct {
BSTR Name;
BSTR Date;
BSTR Time;
long Bytes;
long isdir;
} FSDir;

Arguments Name This value contains the name of the file or
directory.

Date This value contains the date the file or
directory was last modified.

Time This value contains the time the file or
directory was last modified.

Bytes This value contains the size of the file in
bytes. If the element is a directory, this value
is 0.

isdir This value indicates if the element is a file
(0) or directory (1). If it is a directory, Bytes
has a value of 0.

Description The FSDir structure contains information for a directory in the file
system.

See Also API methodxPCFileSystem.DirList

6-7

FSDiskInfo

Purpose Type definition for file system disk information structure

Prototpye typedef struct {
BSTR Label;
BSTR DriveLetter;
BSTR Reserved;
long SerialNumber;
long FirstPhysicalSector;
long FATType;
long FATCount;
long MaxDirEntries;
long BytesPerSector;
long SectorsPerCluster;
long TotalClusters;
long BadClusters;
long FreeClusters;
long Files;
long FileChains;
long FreeChains;
long LargestFreeChain;

} FSDiskInfo;

Arguments Label This value contains the zero-terminated
string that contains the volume label. The
string is empty if the volume has no label.

DriveLetter This value contains the drive letter, in
uppercase.

Reserved Reserved.

SerialNumber This value contains the volume serial number.

FirstPhysicalSector This value contains the logical block address
(LBA) of the logical drive boot record. For
3.5-inch disks, this value is 0.

6-8

FSDiskInfo

FATType This value contains the type of file system
found. It can contain 12 , 16 , or 32 for FAT-12,
FAT-16, or FAT-32 volumes, respectively.

FATCount This value contains the number of FAT
partitions on the volume.

MaxDirEntries This value contains the size of the root
directory. For FAT-32 systems, this value is 0.

BytesPerSector This value contains the sector size. This
value is most likely to be 512.

SectorsPerCluster This value contains, in sectors, the size of the
smallest unit of storage that can be allocated
to a file.

TotalClusters This value contains the number of file storage
clusters on the volume.

BadClusters This value contains the number of clusters
that have been marked as bad. These clusters
are unavailable for file storage.

FreeClusters This value contains the number of clusters
that are currently available for storage.

Files This value contains the number of files,
including directories, on the volume. This
number excludes the root directory and files
that have an allocated file size of 0.

FileChains This value contains the number of contiguous
cluster chains. On a completely unfragmented
volume, this value is identical to the value
of Files.

6-9

FSDiskInfo

FreeChains This value contains the number of contiguous
cluster chains of free clusters. On a
completely unfragmented volume, this value
is 1.

LargestFreeChain This value contains the maximum allocated
file size, in number of clusters, for a newly
allocated contiguous file. On a completely
unfragmented volume, this value is identical
to FreeClusters.

Description The FSDiskInfo structure contains information for file system disks.

See Also API method xPCFileSystem.GetDiskInfo

6-10

lgmode

Purpose Type definition for logging options structure

Prototype typedef struct {
int mode;
double incrementvalue;

} lgmode;

Arguments mode This value indicates the type of logging you want.
Specify LGMOD_TIME for time-equidistant logging.
Specify LGMOD_VALUE for value-equidistant
logging.

incrementvalue If you set mode to LGMOD_VALUE for
value-equidistant data, this option specifies
the increment (difference in amplitude) value
between logged data points. A data point is
logged only when an output signal or a state
changes by incrementvalue.

If you set mode to LGMOD_TIME, incrementvalue
is ignored.

Description The lgmode structure specifies data logging options. The mode variable
accepts either the numeric values 0 or 1 or their equivalent constants
LGMOD_TIME or LGMOD_VALUE from xpcapiconst.h.

See Also API functions xPCSetLogMode, xPCGetLogMode

6-11

scopedata

Purpose Type definition for scope data structure

Prototype typedef struct {
int number;
int type;
int state;
int signals[10];
int numsamples;
int decimation;
int triggermode;
int numprepostsamples;
int triggersignal
int triggerscope;
int triggerscopesample;
double triggerlevel;
int triggerslope;

} scopedata;

Arguments number The scope number.

type Determines whether the scope is displayed
on the host computer or on the target
computer. Values are one of the following:

1 Host

2 Target

state Indicates the scope state. Values are one of
the following:

0 Waiting to start

1 Scope is waiting for a trigger

2 Data is being acquired

3 Acquisition is finished

4 Scope is stopped (interrupted)

6-12

scopedata

5 Scope is preacquiring data

signals List of signal indices from the target object
to display on the scope.

numsamples Number of contiguous samples captured
during the acquisition of a data package.

decimation A number, N, meaning every Nth sample is
acquired in a scope window.

triggermode Trigger mode for a scope. Values are one of
the following:

0 FreeRun (default)

1 Software

2 Signal

3 Scope

numprepostsamples If this value is less than 0, this is the number
of samples to be saved before a trigger event.
If this value is greater than 0, this is the
number of samples to skip after the trigger
event before data acquisition begins.

triggersignal If triggermode = 2 for signal, identifies the
block output signal to use for triggering the
scope. You identify the signal with a signal
index.

triggerscope If triggermode = 3 for scope, identifies the
scope to use for a trigger. A scope can be set
to trigger when another scope is triggered.

triggerscopesample If triggermode = 3 for scope, specifies the
number of samples to be acquired by the
triggering scope before triggering a second
scope. This must be a nonnegative value.

6-13

scopedata

triggerlevel If triggermode = 2 for signal, indicates the
value the signal has to cross to trigger the
scope and start acquiring data. The trigger
level can be crossed with either a rising or
falling signal.

triggerslope If triggermode = 2 for signal, indicates
whether the trigger is on a rising or falling
signal. Values are

0 Either rising or falling (default)

1 Rising

2 Falling

Description The scopedata structure holds the data about a scope used in the
functions xPCGetScope and xPCSetScope. In the structure, the fields
are as in the various xPCGetSc* functions (for example, state is as in
xPCScGetState, signals is as in xPCScGetSignals, etc.). The signal
vector is an array of the signal identifiers, terminated by -1.

See Also API functions xPCSetScope, xPCGetScope, xPCScGetType,
xPCScGetState, xPCScGetSignals, xPCScGetNumSamples,
xPCScGetDecimation, xPCScGetTriggerMode,
xPCScGetNumPrePostSamples, xPCScGetTriggerSignal,
xPCScGetTriggerScope, xPCScGetTriggerLevel,
xPCScGetTriggerSlope

6-14

xPCAddScope

Purpose Create new scope

Prototype void xPCAddScope(int port, int scType, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scType Enter the type of scope.

scNum Enter a number for a new scope. Values are 1, 2, 3. . .

Description The xPCAddScope function creates a new scope on the target PC. For
scType, scopes can be of type host or target, depending on the value of
scType:

• SCTYPE_HOST for type host

• SCTYPE_TARGET for type target

• SCTYPE_FILE for type file

Constants for scType are defined in the header file xpcapiconst.h as
SCTYPE_HOST, SCTYPE_TARGET, and SCTYPE_FILE.

Calling the xPCAddScope function with scNum having the number of
an existing scope produces an error. Use xPCGetScopes to find the
numbers of existing scopes.

See Also API functions xPCScAddSignal, xPCScRemSignal, xPCRemScope,
xPCSetScope, xPCGetScope, xPCGetScopes

Target object method addscope

6-15

xPCAverageTET

Purpose Return average task execution time

Prototype double xPCAverageTET(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCAverageTET function returns the average task execution time
(TET) for the target application.

Description The xPCAverageTET function returns the TET for the target application.
You can use this function when the target application is running or
when it is stopped.

See Also API functions xPCMaximumTET, xPCMinimumTET

Target object property AvgTET

6-16

xPCCloseConnection

Purpose Close RS-232 or TCP/IP communication connection

Prototype void xPCCloseConnection(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description The xPCCloseConnection function closes the RS-232 or
TCP/IP communication channel opened by xPCOpenSerialPort,
xPCOpenTcpIpPort, or xPCOpenConnection. Unlike xPCClosePort,
it preserves the connection information such that a subsequent
call to xPCOpenConnection succeeds without the need to
resupply communication data such as the IP address or port
number. To completely close the communication channel, call
xPCDeRegisterTarget. Calling the xPCCloseConnection function
followed by calling xPCDeRegisterTarget is equivalent to calling
xPCClosePort.

See Also API functions xPCOpenConnection, xPCOpenSerialPort,
xPCOpenTcpIpPort, xPCReOpenPort, xPCRegisterTarget,
xPCDeRegisterTarget

6-17

xPCClosePort

Purpose Close RS-232 or TCP/IP communication connection

Prototype void xPCClosePort(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description The xPCClosePort function closes the RS-232 or TCP/IP communication
channel opened by either xPCOpenSerialPort or by xPCOpenTcpIpPort.
Calling this function is equivalent to calling xPCCloseConnection and
xPCDeRegisterTarget.

See Also API functions xPCOpenSerialPort, xPCOpenTcpIpPort, xPCReOpenPort,
xPCOpenConnection, xPCCloseConnection, xPCRegisterTarget,
xPCDeRegisterTarget

Target object method close

6-18

xPCDeRegisterTarget

Purpose Delete target communication properties from xPC Target™ API library

Prototype void xPCDeRegisterTarget(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description The xPCDeRegisterTarget function causes the xPC Target API library
to completely “forget” about the target communication properties. It
works similarly to xPCClosePort, but does not close the connection
to the target machine. Before calling this function, you must first
call the function xPCCloseConnection to close the connection to the
target machine. The combination of calling the xPCCloseConnection
and xPCDeRegisterTarget functions has the same effect as calling
xPCClosePort.

See Also API functions xPCRegisterTarget, xPCOpenTcpIpPort,
xPCOpenSerialPort, xPCClosePort, xPCReOpenPort,
xPCOpenConnection, xPCCloseConnection, xPCTargetPing

6-19

xPCErrorMsg

Purpose Return text description for error message

Prototype char *xPCErrorMsg(int error_number, char *error_message);

Arguments error_number Enter the constant of an error.

error_message The xPCErrorMsg function copies the error message
string into the buffer pointed to by error_message.
error_message is then returned. You can later use
error_message in a function such as printf.

If error_message is NULL, the xPCErrorMsg
function returns a pointer to a statically allocated
string.

Return The xPCErrorMsg function returns a string associated with the error
error_number.

Description The xPCErrorMsg function returns error_message, which makes
it convenient to use in a printf or similar statement. Use the
xPCGetLastError function to get the constant for which you are getting
the message.

See Also API functions xPCSetLastError, xPCGetLastError

6-20

xPCFileSystem.CD

Purpose Change current directory on target PC to specified path

Prototype long CD(BSTR dir);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] dir Enter the path on the target PC to change to.

Return If there is an error, this method returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.CD method changes the current directory on the
target PC to the path specified in dir. Use the xPCFileSystem.PWD
method to show the current directory of the target PC.

See Also API method xPCFileSystem.PWD

6-21

xPCFileSystem.CloseFile

Purpose Close file on target PC

Prototype CloseFile(long filehandle);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] filehandle Enter the file handle of an open file on the
target PC.

Return If there is an error, this method returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.CloseFile method closes the file associated
with fileHandle on the target PC. fileHandle is the handle of a file
previously opened by the xPCFileSystem.OpenFile method.

See Also API methods xPCFileSystem.OpenFile, xPCFileSystem.ReadFile,
xPCFileSystem.WriteFile

6-22

xPCFileSystem.DirList

Purpose Return contents of target PC directory

Prototype DirList(BSTR path);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] path Enter the path of the directory.

Description The xPCFileSystem.DirList method returns the contents of the target
PC directory specified by path as an array of the FSDir structure.

See Also API structure FSDir

API method xPCFileSystem.GetDiskInfo

6-23

xPCFileSystem.GetDiskInfo

Purpose Return disk information

Prototype GetDiskInfo(BSTR driveLetter);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] driveLetter Enter the driver letter that contains the file
system.

Description The xPCFileSystem.GetDiskInfo method accepts as input the drive
specified by driveLetter and fills in the fields of the FSDiskInfo
structure.

See Also API structure FSDiskInfo

API method xPCFileSystem.DirList

6-24

xPCFileSystem.GetFileSize

Purpose Return size of file on target PC

Prototype long GetFileSize(long filehandle);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] filehandle Enter the file handle of an open file on the
target PC.

Return This method returns the size of the specified file in bytes.

Description The xPCFileSystem.GetFileSize method returns the size, in bytes,
of the file associated with filehandle on the target PC. filehandle is
the handle of a file previously opened by the xPCFileSystem.OpenFile
method.

See Also API methods xPCFileSystem.OpenFile, xPCFileSystem.ReadFile

6-25

xPCFileSystem.Init

Purpose Initialize file system object to communicate with target PC

Prototype long Init(IxPCProtocol* xPCProtocol);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] xPCProtocol Specify the communication port of the target
PC object for which the file system is to be
initialized.

Return If there is an error, this method returns -1. Otherwise, the
xPCFileSystem.Init method returns 0.

Description The xPCFileSystem.Init method initializes the file system object to
communicate with the target PC referenced by the xPCProtocol object.

6-26

xPCFileSystem.MKDIR

Purpose Create directory on target PC

Prototype long MKDIR(BSTR dirname);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] dirname Enter the name of the directory to create on the
target PC.

Return If there is an error, this method returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.MKDIR method creates the directory dirname in the
current directory of the target PC.

See Also API method xPCFileSystem.PWD

6-27

xPCFileSystem.OpenFile

Purpose Open file on target PC

Prototype long OpenFile(BSTR filename, BSTR permission);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] filename Enter the name of the file to open on the
target PC.

[in] permission Enter the read/write permission with which
to open the file. Values are r (read) or w
(read/write).

Return The xPCFileSystem.OpenFile method returns the file handle for the
opened file.

Description The xPCFileSystem.OpenFile method opens the specified
file, filename, on the target PC. If the file does not exist, the
xPCFileSystem.OpenFile method creates filename, then opens it. You
can open a file for read or read/write access.

See Also API methods xPCFileSystem.CloseFile,
xPCFileSystem.GetFileSize, xPCFileSystem.ReadFile,
xPCFileSystem.WriteFile

6-28

xPCFileSystem.PWD

Purpose Get current directory of target PC

Prototype BSTR PWD();

Member
Of

XPCAPICOMLib.xPCFileSystem

Return This method returns the path of the current directory on the target PC.

Description The xPCFileSystem.PWD method places the path of the current
directory on the target PC.

See Also API method xPCFileSystem.CD

6-29

xPCFileSystem.ReadFile

Purpose Read open file on target PC

Prototype VARIANT ReadFile(int fileHandle, int start, int numbytes);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] fileHandle Enter the file handle of an open file on the
target PC.

[in] start Enter an offset from the beginning of the file
from which this method can start to read.

[in] numbytes Enter the number of bytes this method is to
read from the file.

Return This method returns the results of the read operation as a VARIANT of
type Byte. If there is an error, this method returns VT_ERROR, whose
value is 10, instead.

Description The xPCFileSystem.ReadFile method reads an open file on the target
PC and returns the results of the read operation as a VARIANT of type
Byte. fileHandle is the file handle of a file previously opened by
xPCFileSystem.OpenFile. You can specify that the read operation
begin at the beginning of the file (default) or at a certain offset into the
file (start). The numbytes parameter specifies how many bytes the
xPCFileSystem.ReadFile method is to read from the file.

See Also API methods xPCFileSystem.CloseFile,
xPCFileSystem.GetFileSize, xPCFileSystem.OpenFile,
xPCFileSystem.WriteFile

6-30

xPCFileSystem.RemoveFile

Purpose Remove file from target PC

Prototype long RemoveFile(BSTR filename);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] filename Enter the name of a file on the target PC.

Return If there is an error, this method returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.RemoveFile method removes the file named
filename from the target PC file system. filename can be a relative or
absolute pathname on the target PC.

6-31

xPCFileSystem.RMDIR

Purpose Remove directory from target PC

Prototype long RMDIR(BSTR dirname);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] dirname Enter the name of a directory on the target
PC.

Return If there is an error, this method returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.RMDIR method removes a directory named dirname
from the target PC file system. dirname can be a relative or absolute
pathname on the target PC.

6-32

xPCFileSystem.ScGetFileName

Purpose Get name of file for scope

Prototype BSTR ScGetFileName(long scNum);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

Return Returns the name of the file for the scope.

Description The xPCFileSystem.ScGetFileName method returns the name of the
file to which scope scNum will save signal data.

See Also API method xPCFileSystem.ScSetFileName

6-33

xPCFileSystem.ScGetWriteMode

Purpose Get write mode of file for scope

Prototype long ScGetWriteMode(long scNum);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

Return This method returns the number indicating the write mode. Values are

0 Lazy mode. The FAT entry is updated only when the file is
closed and not during each file write operation. This mode
is faster, but if the system crashes before the file is closed,
the file system might not have the actual file size (the file
contents, however, will be intact).

1 Commit mode. Each file write operation simultaneously
updates the FAT entry for the file. This mode is slower, but
the file system always has the actual file size.

Description The xPCFileSystem.ScGetWriteMode method returns the write mode
of the file for the scope.

See Also API method xPCFileSystem.ScSetWriteMode

6-34

xPCFileSystem.ScGetWriteSize

Purpose Get block write size of data chunks

Prototype long ScGetWriteSize(long scNum);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

Return This method returns the block size, in bytes, of the data chunks.

Description The xPCFileSystem.ScGetWriteSize method gets the block size, in
bytes, of the data chunks.

See Also API method xPCFileSystem.ScSetWriteSize

6-35

xPCFileSystem.ScSetFileName

Purpose Specify file name to contain signal data

Prototype long ScSetFileName(long scNum, BSTR filename);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

[in] filename Enter the name of a file to contain the signal
data.

Return If there is an error, this method returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.ScSetFileName method sets the name of the file to
which the scope will save the signal data. The xPC Target™ software
creates this file in the target PC file system. Note that you can only call
this method when the scope is stopped.

See Also API method xPCFileSystem.ScGetFileName

6-36

xPCFileSystem.ScSetWriteMode

Purpose Specify when file allocation table entry is updated

Prototype long ScSetWriteMode(long scNum, long writeMode);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

[in] writeMode Enter an integer for the write mode:

0 Enables lazy write mode

1 Enables commit write mode

Return If there is an error, this method returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.ScSetWriteMode method specifies when a file
allocation table (FAT) entry is updated. Both modes write the signal
data to the file, as follows:

0 Lazy mode. The FAT entry is updated only when the file is
closed and not during each file write operation. This mode
is faster, but if the system crashes before the file is closed,
the file system might not have the actual file size (the file
contents, however, will be intact).

1 Commit mode. Each file write operation simultaneously
updates the FAT entry for the file. This mode is slower,
but the file system always has the actual file size.

See Also API method xPCFileSystem.ScSetWriteMode

Scope object property Mode

6-37

xPCFileSystem.ScSetWriteSize

Purpose Specify that memory buffer collect data in multiples of write size

Prototype long ScSetWriteSize(long scNum, long writeSize);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

[in] writeSize Enter the block size, in bytes, of the data
chunks.

Return If there is an error, this method returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.ScSetWriteSize method specifies that a memory
buffer collect data in multiples of writeSize. By default, this parameter
is 512 bytes, which is the typical disk sector size. Using a block size
that is the same as the disk sector size provides optimal performance.
writeSize must be a multiple of 512.

See Also API method xPCFileSystem.ScGetWriteSize

Scope object property WriteSize

6-38

xPCFileSystem.WriteFile

Purpose Write to file on target PC

Prototype long WriteFile(long fileHandle, long numbytes,
VARIANT buffer);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] fileHandle Enter the file handle of an open file on the
target PC.

[in] numbytes Enter the number of bytes this method is
to write into the file.

[in] buffer The contents to write to fileHandle are
stored in buffer.

Return If there is an error, this method returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.WriteFile method writes the contents of the
VARIANT buffer, of type Byte, to the file specified by fileHandle on the
target PC. The fileHandle parameter is the handle of a file previously
opened by xPCFSOpenFile. numbytes is the number of bytes to write to
the file.

See Also API methods xPCFileSystem.CloseFile,
xPCFileSystem.GetFileSize, xPCFileSystem.OpenFile,
xPCFileSystem.ReadFile

6-39

xPCFreeAPI

Purpose Unload xPC Target™ DLL

Prototype int xPCFreeAPI(void);

Arguments none

Description The xPCFreeAPI function unloads the xPC Target dynamic link library.
You must execute this function once at the end of the application to
unload the xPC Target API DLL. This frees the memory allocated to the
functions. This function is defined in the file xpcinitfree.c. Link this
file with your application.

See Also API functions xPCInitAPI, xPCNumLogWraps, xPCNumLogSamples,
xPCMaxLogSamples, xPCGetStateLog, xPCGetTETLog, xPCSetLogMode,
xPCGetLogMode

6-40

xPCFSCD

Purpose Change current directory on target PC to specified path

Prototype void xPCFSCD(int port, char *dir);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

dir Enter the path on the target PC to change to.

Description The xPCFSCD function changes the current directory on the target PC to
the path specified in dir. Use the xPCFSGetPWD function to show the
current directory of the target PC.

See Also API function xPCFSGetPWD

File object method cd

6-41

xPCFSCloseFile

Purpose Close file on target PC

Prototype void xPCFSCloseFile(int port, int fileHandle);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target
PC.

Description The xPCFSCloseFile function closes the file associated with fileHandle
on the target PC. fileHandle is the handle of a file previously opened
by the xPCFSOpenFile function.

See Also API functions xPCFSOpenFile, xPCFSReadFile, xPCFSWriteFile

File object method fclose

6-42

xPCFSDir

Purpose Get contents of specified directory on target PC

Prototype void xPCFSDir(int port, const char *path, char
*data, int numbytes);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

path Enter the path on the target PC.

data The contents of the directory are stored in data, whose
allocated size is specified in numbytes.

numbytes Enter the size, in bytes, of the array data.

Description The xPCFSDir function copies the contents of the target PC directory
specified by path into data. The xPCFSDir function returns the listing in
the data array, which must be of size numbytes. Use the xPCFSDirSize
function to obtain the size of the directory for the numbytes parameter.

See Also API function xPCFSDirSize

File object method dir

6-43

xPCFSDirItems

Purpose Get contents of specified directory on target PC

Prototype void xPCFSDirItems(int port, const char *path, dirStruct
*dirs, int numDirItems);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

path Enter the path on the target PC.

dirs Enter the structure to contain the contents of the
directory.

numDirItems Enter the number of items in the directory.

Description The xPCFSDirItems function copies the contents of the target PC
directory specified by path. The xPCFSDirItems function copies the
listing into the dirs structure, which must be of size numDirItems. Use
the xPCFSDirStructSize function to obtain the size of the directory
for the numDirItems parameter.

See Also API functions xPCFSDirStructSize, dirStruct

File object method dir

6-44

xPCFSDirSize

Purpose Return size of specified directory on target PC

Prototype int xPCFSDirSize(int port, const char *path);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

path Enter the directory path on the target PC.

Return The xPCFSDirSize function returns the size, in bytes, of the specified
directory.

Description The xPCFSDirSize function returns the size, in bytes, of the buffer
needed to get the directory listing of the directory on the target PC. Use
this size as the numbytes parameter in the xPCFSDir function.

See Also API function xPCFSDirItems

File object method dir

6-45

xPCFSDirStructSize

Purpose Get number of items in directory

Prototype int xPCFSDirSize(int port, const char *path);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

path Enter the directory path on the target PC.

Description The xPCFSDirStructSize function returns the number of items in the
directory on the target PC. Use this size as the numDirItems parameter
in the xPCFSDirItems function.

See Also API function xPCFSDir

File object method dir

6-46

xPCFSDiskInfo

Purpose Information about target PC file system

Prototype diskinfo xPCFSDiskInfo(int port, const char *driveletter);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the
function xPCOpenTcpIpPort.

driveletter Enter the drive letter of the file system
for which you want information.

Description The xPCFSDiskInfo function returns disk information for the file
system of the specified target PC drive, driveletter. This function
returns this information in the diskinfo structure.

See Also API structure diskinfo

6-47

xPCFSGetError

Purpose Get text description for error number on target PC file system

Prototype void xPCFSGetError(int port, unsigned int error_number,
char *error_message);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

error_number Enter the constant of an error.

error_message The string of the message associated with the
error error_number is stored in error_message.

Description The xPCFSGetError function gets the error_message associated with
error_number. This enables you to use the error message in a printf
or similar statement.

6-48

xPCFSGetFileSize

Purpose Return size of file on target PC

Prototype int xPCFSGetFileSize(int port, int fileHandle);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target PC.

Return Return the size of the specified file in bytes.

Description The xPCFSGetFileSize function returns the size, in bytes, of the file
associated with fileHandle on the target PC. fileHandle is the handle
of a file previously opened by the xPCFSOpenFile function.

See Also API functions xPCFSOpenFile, xPCFSReadFile

File object methods fopen, fread

6-49

xPCFSGetPWD

Purpose Get current directory of target PC

Prototype void xPCFSGetPWD(int port, char *pwd);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

pwd The path of the current directory is stored in pwd.

Description The xPCFSGetPWD function places the path of the current directory on
the target PC in pwd, which must be allocated by the caller.

See Also File object method pwd

6-50

xPCFSMKDIR

Purpose Create new directory on target PC

Prototype void xPCFSMKDIR(int port, const char *dirname);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

dirname Enter the name of the directory to create on the target
PC.

Description The xPCFSMKDIR function creates the directory dirname in the current
directory of the target PC.

See Also API function xPCFSGetPWD

File object method mkdir

6-51

xPCFSOpenFile

Purpose Open file on target PC

Prototype int xPCFSOpenFile(int port, const char *filename,
const char *permission);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

filename Enter the name of the file to open on the target PC.

permission Enter the read/write permission with which to
open the file. Values are r (read) or w (read/write).

Return The xPCFSOpenFile function returns the file handle for the opened file.
If there is an error, this function returns -1.

Description The xPCFSOpenFile function opens the specified file, filename, on the
target PC. If the file does not exist, the xPCFSOpenFile function creates
filename, then opens it. You can open a file for read or read/write
access.

See Also API functions xPCFSCloseFile, xPCFSGetFileSize, xPCFSReadFile,
xPCFSWriteFile

File object methods fclose, filetable, fopen, fread, fwrite

6-52

xPCFSReadFile

Purpose Read open file on target PC

Prototype void xPCFSReadFile(int port, int fileHandle, int start,
int numbytes, unsigned char *data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target PC.

start Enter an offset from the beginning of the file from
which this function can start to read.

numbytes Enter the number of bytes this function is to read
from the file.

data The contents of the file are stored in data.

Description The xPCFSReadFile function reads an open file on the target PC and
places the results of the read operation in the array data. fileHandle
is the file handle of a file previously opened by xPCFSOpenFile. You
can specify that the read operation begin at the beginning of the file
(default) or at a certain offset into the file (start). The numbytes
parameter specifies how many bytes the xPCFSReadFile function is
to read from the file.

See Also API functions xPCFSCloseFile, xPCFSGetFileSize, xPCFSOpenFile,
xPCFSWriteFile

File object methods fopen, fread

6-53

xPCFSRemoveFile

Purpose Remove file from target PC

Prototype void xPCFSRemoveFile(int port, const char *filename);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

filename Enter the name of a file on the target PC.

Description The xPCFSRemoveFile function removes the file named filename from
the target PC file system. filename can be a relative or absolute
pathname on the target PC.

See Also File object method removefile

6-54

xPCFSRMDIR

Purpose Remove directory from target PC

Prototype void xPCFSRMDIR(int port, const char *dirname);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

dirname Enter the name of a directory on the target PC.

Description The xPCFSRMDIR function removes a directory named dirname from the
target PC file system. dirname can be a relative or absolute pathname
on the target PC.

See Also File object method rmdir

6-55

xPCFSScGetFilename

Purpose Get name of file for scope

Prototype const char *xPCFSScGetFilename(int port, int
scNum, char *filename);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

filename The name of the file for the specified scope is stored
in filename.

Return Returns the value of filename, the name of the file for the scope.

Description The xPCFSScGetFilename function returns the name of the file to which
scope scNum will save signal data. filename points to a caller-allocated
character array to which the filename is copied.

See Also API function xPCFSScSetFilename

Scope object property Filename

6-56

xPCFSScGetWriteMode

Purpose Get write mode of file for scope

Prototype int xPCFSScGetWriteMode(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return Returns the number indicating the write mode. Values are

0 Lazy mode. The FAT entry is updated only when the file is
closed and not during each file write operation. This mode
is faster, but if the system crashes before the file is closed,
the file system might not have the actual file size (the file
contents, however, will be intact).

1 Commit mode. Each file write operation simultaneously
updates the FAT entry for the file. This mode is slower, but
the file system always has the actual file size.

Description The xPCFSScGetWriteMode function returns the write mode of the file
for the scope.

See Also API function xPCFSScSetWriteMode

Scope object property Mode

6-57

xPCFSScGetWriteSize

Purpose Get block write size of data chunks

Prototype unsigned int xPCFSScGetWriteSize(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return Returns the block size, in bytes, of the data chunks.

Description The xPCFSScGetWriteSize function gets the block size, in bytes, of
the data chunks.

See Also API function xPCFSScSetWriteSize

Scope object property WriteSize

6-58

xPCFSScSetFilename

Purpose Specify name for file to contain signal data

Prototype void xPCFSScSetFilename(int port, int scNum,
const char *filename);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

filename Enter the name of a file to contain the signal data.

Description The xPCFSScSetFilename function sets the name of the file to which
the scope will save the signal data. The xPC Target™ software creates
this file in the target PC file system. Note that you can only call this
function when the scope is stopped.

See Also API function xPCFSScGetFilename

Scope object property Filename

6-59

xPCFSScSetWriteMode

Purpose Specify when file allocation table entry is updated

Prototype void xPCFSScSetWriteMode(int port, int scNum, int writeMode);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

writeMode Enter an integer for the write mode:

0 Enables lazy write mode

1 Enables commit write mode

Description The xPCFSScSetWriteMode function specifies when a file allocation
table (FAT) entry is updated. Both modes write the signal data to the
file, as follows:

0 Lazy mode. The FAT entry is updated only when the file is
closed and not during each file write operation. This mode
is faster, but if the system crashes before the file is closed,
the file system might not have the actual file size (the file
contents, however, will be intact).

1 Commit mode. Each file write operation simultaneously
updates the FAT entry for the file. This mode is slower,
but the file system always has the actual file size.

See Also API function xPCFSScGetWriteMode

Scope object property Mode

6-60

xPCFSScSetWriteSize

Purpose Specify that memory buffer collect data in multiples of write size

Prototype void xPCFSScSetWriteSize(int port, int scNum, unsigned int
writeSize);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

writeSize Enter the block size, in bytes, of the data chunks.

Description The xPCFSScSetWriteSize function specifies that a memory buffer
collect data in multiples of writeSize. By default, this parameter is 512
bytes, which is the typical disk sector size. Using a block size that is the
same as the disk sector size provides optimal performance. writeSize
must be a multiple of 512.

See Also API function xPCFSScGetWriteSize

Scope object property WriteSize

6-61

xPCFSWriteFile

Purpose Write to file on target PC

Prototype void xPCFSWriteFile(int port, int fileHandle, int numbytes,
const unsigned char *data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target PC.

numbytes Enter the number of bytes this function is to write
into the file.

data The contents to write to fileHandle are stored in
data.

Description The xPCFSWriteFile function writes the contents of the array data
to the file specified by fileHandle on the target PC. The fileHandle
parameter is the handle of a file previously opened by xPCFSOpenFile.
numbytes is the number of bytes to write to the file.

See Also API functions xPCFSCloseFile, xPCFSGetFileSize, xPCFSOpenFile,
xPCFSReadFile

6-62

xPCGetAPIVersion

Purpose Get version number of xPC Target™ API

Prototype const char *xPCGetAPIVersion(void);

Arguments none

Return The xPCGetApiVersion function returns a string with the version
number of the xPC Target kernel on the target PC.

Description The xPCGetApiVersion function returns a string with the version
number of the xPC Target kernel on the target PC. The string is a
constant string within the API DLL. Do not modify this string.

See Also API function xPCGetTargetVersion

6-63

xPCGetAppName

Purpose Return target application name

Prototype char *xPCGetAppName(int port, char *model_name);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

model_name The xPCGetAppName function copies the target
application name string into the buffer pointed to by
model_name. model_name is then returned. You can
later use model_name in a function such as printf.

Note that the maximum size of the buffer is 256
bytes. To ensure that you have enough space for the
application name string, allocate a buffer of size 256
bytes.

Return The xPCGetAppName function returns a string with the name of the
target application.

Description The xPCGetAppName function returns the name of the target application.
You can use the return value, model_name, in a printf or similar
statement. In case of error, the name string is unchanged.

Examples Allocate 256 bytes for the buffer appname.

char *appname=malloc(256);
xPCGetAppName(iport,appname);
appname=realloc(appname,strlen(appname)+1);
...
free(appname);

See Also API function xPCIsAppRunning

Target object property Application

6-64

xPCGetEcho

Purpose Return display mode for target message window

Prototype int xPCGetEcho(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetEcho function returns the number indicating the display
mode. Values are

1 Display is on. Messages are displayed in the message
display window on the target.

0 Display is off.

Description The xPCGetEcho function returns the display mode of the target PC
using communication channel port. Messages include the status
of downloading the target application, changes to parameters, and
changes to scope signals.

See Also API function xPCSetEcho

6-65

xPCGetExecTime

Purpose Return target application execution time

Prototype double xPCGetExecTime(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetExecTime function returns the current execution time for a
target application. If there is an error, this function returns -1.

Description The xPCGetExecTime function returns the current execution time for
the running target application. If the target application is stopped, the
value is the last running time when the target application was stopped.
If the target application is running, the value is the current running
time.

See Also API functions xPCSetStopTime, xPCGetStopTime

Target object property ExecTime

6-66

xPCGetLastError

Purpose Return constant of last error

Prototype int xPCGetLastError(void);

Return The xPCGetLastError function returns the error constant for the last
reported error. If there is no error, this function returns 0.

Description The xPCGetLastError function returns the constant of the last reported
error by another API function. This value is reset every time you
call a new function. Therefore, you should check this constant value
immediately after a call to an API function. For a list of error constants
and messages, see Appendix A, “xPC Target™ C API Error Messages”.

See Also API functions xPCErrorMsg, xPCSetLastError

6-67

xPCGetLoadTimeOut

Purpose Return timeout value for communication between host PC and target PC

Prototype int xPCGetLoadTimeOut(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetLoadTimeOut function returns the number of seconds
allowed for the communication between the host PC and target
application. If there is an error, this function returns -1.

Description The xPCGetLoadTimeOut function returns the number of seconds
allowed for the communication between the host PC and the
target application. When an xPC Target™ API function initiates
communication between the host PC and target PC, it waits for a
certain amount of time before checking to see if the communication is
complete. In the case where communication with the target PC is not
complete, the function returns a timeout error.

For example, when you load a new target application onto the target
PC, the function xPCLoadApp waits for a certain amount of time
before checking to see if the initialization of the target application
is complete. In the case where initialization of the target application
is not complete, the function xPCLoadApp returns a timeout error. By
default, xPCLoadApp checks for the readiness of the target PC for up to
5 seconds. However, in the case of larger models or models requiring
longer initialization (for example, those with thermocouple boards),
the default of about 5 seconds might not be sufficient and a spurious
timeout is generated. Other functions that communicate with the target
PC will wait for timeOut seconds before declaring a timeout event. The
function xPCSetLoadTimeOut sets the timeout to a different number.

Use the xPCGetLoadTimeOut function if you suspect that the current
number of seconds (the timeout value) is too short. Then use the
xPCSetLoadTimeOut function to set the timeout to a higher number.

6-68

xPCGetLoadTimeOut

See Also API functions xPCLoadApp, xPCSetLoadTimeOut,

xPCUnloadApp

“Increasing the Time-Out Value” in the Getting Started withxPC Target
documentation.

6-69

xPCGetLogMode

Purpose Return logging mode and increment value for target application

Prototype lgmode xPCGetLogMode(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetLogMode function returns the logging mode in the lgmode
structure. If the logging mode is 1 (LGMOD_VALUE), this function also
returns an increment value in the lgmode structure. If an error occurs,
this function returns -1.

Description The xPCGetLogMode function gets the logging mode and increment
value for the current target application. The increment (difference
in amplitude) value is measured between logged data points. A data
point is logged only when an output signal or a state changes by the
increment value.

See Also API function xPCSetLogMode

API structure lgmode

6-70

xPCGetNumOutputs

Purpose Return number of outputs

Prototype int xPCGetNumOutputs(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetNumOutputs function returns the number of outputs in the
current target application. If there is an error, this function returns -1.

Description The xPCGetNumOutputs function returns the number of outputs in the
target application. The number of outputs equals the sum of the input
signal widths of all output blocks at the root level of the Simulink®

model.

See Also API functions xPCGetOutputLog, xPCGetNumStates, xPCGetStateLog

6-71

xPCGetNumParams

Purpose Return number of tunable parameters

Prototype int xPCGetNumParams(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetNumParams function returns the number of tunable
parameters in the target application. If there is an error, this function
returns -1.

Description The xPCGetNumParams function returns the number of tunable
parameters in the target application. Use this function to see how many
parameters you can get or modify.

See Also API functions xPCGetParamIdx, xPCSetParam, xPCGetParam,
xPCGetParamName, xPCGetParamDims

Target object property NumParameters

6-72

xPCGetNumSignals

Purpose Return number of signals

Prototype int xPCGetNumSignals(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetNumSignals function returns the number of signals in the
target application. If there is an error, this function returns -1.

Description The xPCGetNumSignals function returns the total number of signals in
the target application that can be monitored from the host. Use this
function to see how many signals you can monitor.

See Also API functions xPCGetSignalIdx, xPCGetSignal, xPCGetSignals,
xPCGetSignalName, xPCGetSignalWidth

Target object property NumSignals

6-73

xPCGetNumStates

Purpose Return number of states

Prototype int xPCGetNumStates(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetNumStates function returns the number of states in the
target application. If there is an error, this function returns -1.

Description The xPCGetNumStates function returns the number of states in the
target application.

See Also API functions xPCGetStateLog, xPCGetNumOutputs, xPCGetOutputLog

Target object property StateLog

6-74

xPCGetOutputLog

Purpose Copy output log data to array

Prototype void xPCGetOutputLog(int port, int first_sample,
int num_samples,
int decimation, int output_id, double *output_data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.

num_samples Enter the number of samples to copy from the output
log.

decimation Select whether to copy all the sample values or every
Nth value.

output_id Enter an output identification number.

output_data The log is stored in output_data, whose allocation
is the responsibility of the caller.

Description The xPCGetOutputLog function gets the output log and copies that log
to an array. You get the data for each output signal in turn by specifying
output_id. Output IDs range from 0 to (N-1), where N is the return
value of xPCGetNumOutputs. Entering 1 for decimation copies all
values. Entering N copies every Nth value.

For first_sample, the sample indices range from 0 to (N-1), where N is
the return value of xPCNumLogSamples. Get the maximum number of
samples by calling the function xPCNumLogSamples.

Note that the target application must be stopped before you get the
number.

6-75

xPCGetOutputLog

See Also API functions xPCNumLogWraps, xPCNumLogSamples, xPCMaxLogSamples,
xPCGetNumOutputs, xPCGetStateLog, xPCGetTETLog, xPCGetTimeLog

Target object method getlog

Target object property OutputLog

6-76

xPCGetParam

Purpose Get parameter value and copy it to array

Prototype void xPCGetParam(int port, int paramIndex,
double *paramValue);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

paramIndex Enter the index for a parameter.

paramValue The function returns a parameter value as an array
of doubles.

Description The xPCGetParam function returns the parameter as an array
in paramValue. paramValue must be of sufficient size to hold
the parameter. You can query the size by calling the function
xPCGetParamDims. Get the parameter index by calling the function
xPCGetParamIdx. The parameter matrix is returned as a vector, with
the conversion being done in column-major format. It is also returned
as a double, regardless of the data type of the actual parameter.

For paramIndex, values range from 0 to (N-1), where N is the return
value of xPCGetNumParams.

See Also API functions xPCSetParam, xPCGetParamDims, xPCGetParamIdx,
xPCGetNumParams

Target object method getparamid

Target object properties ShowParameters, Parameters

6-77

xPCGetParamDims

Purpose Get row and column dimensions of parameter

Prototype void xPCGetParamDims(int port, int paramIndex,
int *dimension);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

paramIndex Parameter index.

dimension Dimensions (row, column) of a parameter.

Description The xPCGetParamDims function gets the dimensions (row, column) of a
parameter with paramIndex and stores them in dimension, which must
have at least two elements.

For paramIndex, values range from 0 to (N-1), where N is the return
value of xPCGetNumParams.

See Also API functions xPCGetParamIdx, xPCGetParamName, xPCSetParam,
xPCGetParam, xPCGetNumParams

Target object method getparamid

Target object properties ShowParameters, Parameters

6-78

xPCGetParamIdx

Purpose Return parameter index

Prototype int xPCGetParamIdx(int port, const char *blockName,
const char *paramName);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

blockName Enter the full block path generated by Real-Time
Workshop®.

paramName Enter the parameter name for a parameter associated
with the block.

Return The xPCGetParamIdx function returns the parameter index for the
parameter name. If there is an error, this function returns -1.

Description The xPCGetParamIdx function returns the parameter index for the
parameter name (paramName) associated with a Simulink® block
(blockName). Both blockName and paramName must be identical to those
generated at target application building time. The block names should
be referenced from the file model_namept.m in the generated code,
where model_name is the name of the model. Note that a block can have
one or more parameters.

See Also API functions xPCGetParamDims, xPCGetParamName, xPCGetParam

Target object method getparamid

Target object properties ShowParameters, Parameters

6-79

xPCGetParamName

Purpose Get name of parameter

Prototype void xPCGetParamName(int port, int paramIdx,
char *blockName, char
*paramName);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

paramIdx Enter a parameter index.

blockName String with the full block path generated by
Real-Time Workshop®.

paramName Name of a parameter for a specific block.

Description The xPCGetParamName function gets the parameter name and block
name for a parameter with the index paramIdx. The block path and
name are returned and stored in blockName, and the parameter name
is returned and stored in paramName. You must allocate sufficient
space for both blockName and paramName. If the paramIdx is invalid,
xPCGetLastError returns nonzero, and the strings are unchanged. Get
the parameter index from the function xPCGetParamIdx.

See Also API functions xPCGetParam, xPCGetParamDims, xPCGetParamIdx

Target object properties ShowParameters, Parameters

6-80

xPCGetSampleTime

Purpose Return target application sample time

Prototype double xPCGetSampleTime(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetSampleTime function returns the sample time, in seconds, of
the target application. If there is an error, this function returns -1.

Description The xPCGetSampleTime function returns the sample time, in seconds,
of the target application. You can get the error by using the function
xPCGetLastError.

See Also API function xPCSetSampleTime

Target object property SampleTime

6-81

xPCGetScope

Purpose Get and copy scope data to structure

Prototype scopedata xPCGetScope(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCGetScope function returns a structure of type scopedata.

Description The xPCGetScope function gets properties of a scope with scNum and
copies the properties into a structure with type scopedata. You can
use this function in conjunction with xPCSetScope to change several
properties of a scope at one time. See scopedata for a list of properties.
Use the xPCGetScope function to get the scope number.

See Also API functions xPCSetScope, scopedata

Target object method getscope

6-82

xPCGetScopes

Purpose Get and copy list of scope numbers

Prototype void xPCGetScopes(int port, int *data);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

data List of scope numbers in an integer array (allocated by
the caller) as a list of unsorted integers and terminated
by -1.

Description The xPCGetScopes function gets the list of scopes currently defined.
You can use the constant MAX_SCOPES (defined in xpcapiconst.h) as
the size of data. This is currently set to 30 scopes.

See Also API functions xPCSetScope, xPCGetScope, xPCScGetSignals

Target object property Scopes

6-83

xPCGetSignal

Purpose Return value of signal

Prototype double xPCGetSignal(int port, int sigNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

sigNum Enter a signal number.

Return The xPCGetSignal function returns the current value of signal sigNum.
If there is an error, this function returns -1.

Description The xPCGetSignal function returns the current value of a signal.
For vector signals, use xPCGetSignals rather than call this function
multiple times. Use the xPCGetSignalIdx function to get the signal
number.

See Also API function xPCGetSignals

Target object properties ShowSignals, Signals

6-84

xPCGetSignalIdx

Purpose Return index for signal

Prototype int xPCGetSignalIdx(int port, const char *sigName);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigName Enter a signal name.

Return The xPCGetSignalIdx function returns the index for the signal with
name sigName. If there is an error, this function returns -1.

Description The xPCGetSignalIdx function returns the index of a signal. The name
must be identical to the name generated when the application was
built. You should reference the name from the file model_namebio.m in
the generated code, where model_name is the name of the model. The
creator of the application should already know the signal name.

See Also API functions xPCGetSignalName, xPCGetSignalWidth, xPCGetSignal,
xPCGetSignals

Target object method getsignalid

6-85

xPCGetSigIdxfromLabel

Purpose Return array of signal indices

Prototype int xPCGetSigIdxfromLabel(int port, const char
*sigLabel, int *sigIds);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigLabel String with the name of a signal label.

sigIds Return array of signal indices.

Return The xPCGetSigIdxfromLabel function fills an array sigIds of signal
indices. If no signal is found, this function returns -1. It returns zero
(0) upon success.

Description The xPCGetSigIdxfromLabel function returns in sigIds the array
of signal indices for signal sigName. This function assumes that you
have labeled the signal for which you request the indices (see the
Signal name parameter of the “Signal Properties Dialog Box” in the
Simulink® documentation). Note that the xPC Target™ software refers
to Simulink signal names as signal labels. The creator of the application
should already know the signal name/label.

sigIds must be large enough to contain the array of indices. You can
use the xPCGetSigLabelWidth function to get the required amount of
memory to be allocated by the sigIds array.

See Also API functions xPCGetSignalLabel, xPCGetSigLabelWidth

6-86

xPCGetSignalLabel

Purpose Copy label of signal to character array

Prototype char * xPCGetSignalLabel(int port, int sigIdx,
char *sigLabel);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigIdx Enter signal index.

sigLabel Return signal label associated with signal index, sigIdx.

Return The xPCGetSignalLabel function returns the label of the signal.

Description The xPCGetSignalLabel function copies and returns the signal label,
including the block path, of a signal with sigIdx. The result is stored
in sigLabel. If sigIdx is invalid, xPCGetLastError returns a nonzero
value, and sigLabel is unchanged. The function returns sigLabel,
which makes it convenient to use in a printf or similar statement. This
function assumes that you already know the signal index.

This function assumes that you have labeled the signal for which you
request the index (see the Signal name parameter of the “Signal
Properties Dialog Box” in the Simulink® documentation). Note that
the xPC Target™ software refers to Simulink signal names as signal
labels. The creator of the application should already know the signal
name/label.

See Also API functions xPCGetSigIdxfromLabel, xPCGetSigLabelWidth

6-87

xPCGetSigLabelWidth

Purpose Return number of elements in signal

Prototype int xPCGetSigLabelWidth(int port, const char *sigName);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigName String with the name of a signal.

Return The xPCGetSigLabelWidth function returns the number of elements
that the signal sigName contains. If there is an error, this function
returns -1.

Description The xPCGetSigLabelWidth function returns the number of elements
that the signal sigName contains. This function assumes that you
have labeled the signal for which you request the elements (see the
Signal name parameter of the “Signal Properties Dialog Box” in the
Simulink® documentation). Note that the xPC Target™ software refers
to Simulink signal names as signal labels. The creator of the application
should already know the signal name/label.

See Also API functions xPCGetSigIdxfromLabel, xPCGetSignalLabel

6-88

xPCGetSignalName

Purpose Copy name of signal to character array

Prototype char *xPCGetSignalName(int port, int sigIdx,
char *sigName);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigIdx Enter a signal index.

sigName String with the name of a signal.

Return The xPCGetSignalName function returns the name of the signal.

Description The xPCGetSignalName function copies and returns the signal name,
including the block path, of a signal with sigIdx. The result is stored
in sigName. If sigIdx is invalid, xPCGetLastError returns a nonzero
value, and sigName is unchanged. The function returns sigName, which
makes it convenient to use in a printf or similar statement. This
function assumes that you already know the signal index.

See Also API functions xPCGetSignalIdx, xPCGetSignalWidth, xPCGetSignal,
xPCGetSignals

Target object properties ShowSignals, Signals

6-89

xPCGetSignals

Purpose Return vector of signal values

Prototype int xPCGetSignals(int port, int numSignals,
const int *signals,
double *values);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

numSignals Enter the number of signals to be acquired (that is, the
number of values in signals).

signals Enter the list of signal numbers to be acquired.

values Returned values are stored in the double array values.

Return The xPCGetSignals function returns 0 upon success. If there is an
error, this function returns -1.

Description The xPCGetSignals function is the vector version of the function
xPCGetSignal. This function returns the values of a vector of signals
(up to 1000) as fast as it can acquire them. The signal values are not
guaranteed to be at the same time step (for that, define a scope of type
SCTYPE_HOST and use xPCScGetData). xPCGetSignal does the same
thing for a single signal, and could be used multiple times to achieve
the same effect. However, the xPCGetSignals function is faster, and the
signal values are more likely to be spaced closely together. The signals
are converted to doubles regardless of the actual data type of the signal.

For signals, the list you provide should be stored in an integer array.
Get the signal numbers with the function xPCGetSignalIdx.

See Also API function xPCGetSignal, xPCGetSignalIdx

Example To reference signal vector data rather than scalar values, pass a vector
of indices for the signal data. For example:

6-90

xPCGetSignals

/**/

/* Assume a signal of width 10, with the blockpath
* mySubsys/mySignal and the signal index s1.
*/

int i;
int sigId[10];
double sigVal[10]; /* Signal values are stored here */

/* Get the ID of the first signal */
sigId[0] = xPCGetSignalIdx(port, "mySubsys/mySignal/s1");

if (sigId[0] == -1) {
/* Handle error appropriately */
}

for (i = 1; i < 10; i++) {
sigId[i] = sigId[0] + i;

}

xPCGetSignals(port, 10, sigId, sigVal);
/* If no error, sigVal should have the signal values */

/***/

To repeatedly get the signals, repeat the call to xPCGetSignals. If you
do not change sigID, you only need to call xPCGetSignalIdx once.

6-91

xPCGetSignalWidth

Purpose Return width of signal

Prototype int xPCGetSignalWidth(int port, int sigIdx);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigIdx Enter the index of a signal.

Return The xPCGetSignalWidth function returns the signal width for a signal
with sigIdx. If there is an error, this function returns -1.

Description The xPCGetSignalWidth function returns the number of signals for a
specified signal index. Although signals are manipulated as scalars, the
width of the signal might be useful to reassemble the components into a
vector again. A signal’s width is the number of signals in the vector.

See Also API functions xPCGetSignalIdx, xPCGetSignalName, xPCGetSignal,
xPCGetSignals

6-92

xPCGetStateLog

Purpose Copy state log values to array

Prototype void xPCGetStateLog(int port, int first_sample,
int num_samples,
int decimation, int state_id, double *state_data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.

num_samples Enter the number of samples to copy from the output
log.

decimation Select whether to copy all the sample values or every
Nth value.

state_id Enter a state identification number.

state_data The log is stored in state_data, whose allocation is
the responsibility of the caller.

Description The xPCGetStateLog function gets the state log. It then copies the log
into state_data. You get the data for each state signal in turn by
specifying the state_id. State IDs range from 1 to (N-1), where N is the
return value of xPCGetNumStates. Entering 1 for decimation copies
all values. Entering N copies every Nth value. For first_sample, the
sample indices range from 0 to (N-1), where N is the return value of
xPCNumLogSamples. Use the xPCNumLogSamples function to get the
maximum number of samples.

Note that the target application must be stopped before you get the
number.

6-93

xPCGetStateLog

See Also API functions xPCNumLogWraps, xPCNumLogSamples, xPCMaxLogSamples,
xPCGetNumStates, xPCGetOutputLog, xPCGetTETLog, xPCGetTimeLog

Target object method getlog

Target object property StateLog

6-94

xPCGetStopTime

Purpose Return stop time

Prototype double xPCGetStopTime(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetStopTime function returns the stop time as a double, in
seconds, of the target application. If there is an error, this function
returns -10.0. If the stop time is infinity (run forever), this function
returns -1.0.

Description The xPCGetStopTime function returns the stop time, in seconds, of the
target application. This is the amount of time the target application
runs before stopping. If there is an error, this function returns -10.0.
You will then need to use the function xPCGetLastError to find the
error number.

See Also API function xPCSetStopTime

Target object property StopTime

6-95

xPCGetTargetVersion

Purpose Get xPC Target™ kernel version

Prototype void xPCGetTargetVersion(int port, char *ver);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

ver The version is stored in ver.

Description The xPCGetTargetVersion function gets a string with the version
number of the xPC Target kernel on the target PC. It then copies that
version number into ver.

See Also xPCGetAPIVersion

6-96

xPCGetTETLog

Purpose Copy TET log to array

Prototype void xPCGetTETLog(int port, int first_sample,
int num_samples, int decimation,
double *TET_data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.

num_samples Enter the number of samples to copy from the TET
log.

decimation Select whether to copy all the sample values or
every Nth value.

TET_data The log is stored in TET_data, whose allocation is
the responsibility of the caller.

Description The xPCGetTETLog function gets the task execution time (TET) log. It
then copies the log into TET_data. Entering 1 for decimation copies
all values. Entering N copies every Nth value. For first_sample, the
sample indices range from 0 to (N-1), where N is the return value of
xPCNumLogSamples. Use the xPCNumLogSamples function to get the
maximum number of samples.

Note that the target application must be stopped before you get the
number.

See Also API functions xPCNumLogWraps, xPCNumLogSamples, xPCMaxLogSamples,
xPCGetNumOutputs, xPCGetStateLog, xPCGetTimeLog

Target object method getlog

Target object property TETLog

6-97

xPCGetTimeLog

Purpose Copy time log to array

Prototype void xPCGetTimeLog(int port, int first_sample,
int num_samples,
int decimation, double *time_data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.

num_samples Enter the number of samples to copy from the
time log.

decimation Select whether to copy all the sample values or
every Nth value.

time_data The log is stored in time_data, whose allocation
is the responsibility of the caller.

Description The xPCGetTimeLog function gets the time log and copies the log into
time_data. This is especially relevant in the case of value-equidistant
logging, where the logged values are not necessarily uniformly spaced
in time. Entering 1 for decimation copies all values. Entering N copies
every Nth value. For first_sample, the sample indices range from 0
to (N-1), where N is the return value of xPCNumLogSamples. Use the
xPCNumLogSamples function to get the number of samples.

Note that the target application must be stopped before you get the
number.

6-98

xPCInitAPI

Purpose Initialize xPC Target™ DLL

Prototype int xPCInitAPI(void);

Arguments none

Return The xPCInitAPI function returns 0 upon success. If there is an error,
this function returns -1.

Description The xPCInitAPI function initializes the xPC Target dynamic link
library. You must execute this function once at the beginning of the
application to load the xPC Target API DLL. This function is defined in
the file xpcinitfree.c. Link this file with your application.

See Also API functions xPCFreeAPI, xPCNumLogWraps, xPCNumLogSamples,
xPCMaxLogSamples, xPCGetStateLog, xPCGetTETLog, xPCSetLogMode,
xPCGetLogMode

6-99

xPCIsAppRunning

Purpose Return target application running status

Prototype int xPCIsAppRunning(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return If the target application is stopped, the xPCIsAppRunning function
returns 0. If the target application is running, this function returns 1.
If there is an error, this function returns -1.

Description The xPCIsAppRunning function returns 1 or 0 depending on whether
the target application is stopped or running. If there is an error, use the
function xPCGetLastError to check for the error string constant.

See Also API function xPCIsOverloaded

Target object property Status

6-100

xPCIsOverloaded

Purpose Return target PC overload status

Prototype int xPCIsOverloaded(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return If the application is running properly, the xPCIsOverloaded function
returns 1. If the CPU is overloaded, the xPCIsOverloaded function
returns 0. In case of error, this function returns -1.

Description The xPCIsOverloaded function returns 1 if the target application is
running properly and has not overloaded the CPU. It returns 0 if the
target application has overloaded the target PC (CPU Overload).

See Also API function xPCIsAppRunning

Target object property CPUoverload

6-101

xPCIsScFinished

Purpose Return data acquisition status for scope

Prototype int xPCIsScFinished(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return If a scope finishes a data acquisition cycle, the xPCIsScFinished
function returns 1. If the scope is in the process of acquiring data, this
function returns 0. If there is an error, this function returns -1.

Description The xPCIsScFinished function returns a Boolean value depending on
whether scope scNum is finished (state of SCST_FINISHED) or not. You
can also call this function for scopes of type target; however, because
target scopes restart immediately, it is almost impossible to find these
scopes in the finished state. Use the xPCGetScope function to get the
scope number.

See Also API function xPCScGetState

Scope object property Status

6-102

xPCLoadApp

Purpose Load target application onto target PC

Prototype void xPCLoadApp(int port, const char *pathstr,
const char *filename);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

pathstr Enter the full path to the target application file,
excluding the file name. For example, in C, use a
string like "C:\\work".

filename Enter the name of a compiled target application
(*.dlm) without the file extension. For example, in C
use a string like "xpcosc".

Description The xPCLoadApp function loads the compiled target application to the
target PC. pathstr must not contain the trailing backslash. pathstr
can be set to NULL or to the string 'nopath' if the application is in the
current directory. The variable filename must not contain the target
application extension.

Before returning, xPCLoadApp waits for a certain amount of time before
checking whether the model initialization is complete. In the case
where the model initialization is incomplete, xPCLoadApp returns a
timeout error to indicate a connection problem (for example, ETCPREAD).
By default, xPCLoadApp checks for target readiness five times, with
each attempt taking approximately 1 second (less if the target is ready).
However, in the case of larger models or models requiring longer
initialization (for example, those with thermocouple boards), the default
of about 5 seconds might be insufficient and a spurious timeout can be
generated. The functions xPCGetLoadTimeOut and xPCSetLoadTimeOut
control the number of attempts made.

6-103

xPCLoadApp

See Also API functions xPCStartApp, xPCStopApp, xPCUnloadApp,
xPCSetLoadTimeOut, xPCGetLoadTimeOut

Target object method load

6-104

xPCLoadParamSet

Purpose Restore parameter values

Prototype void xPCLoadParamSet(int port, const char *filename);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

filename Enter the name of the file that contains the saved
parameters.

Description The xPCLoadParamSet function restores the target application
parameter values saved in the file filename. This file must be located
on a local drive of the target PC. The parameter file must have been
saved from a previous call to xPCSaveParamSet.

See Also API function xPCSaveParamSet

6-105

xPCMaxLogSamples

Purpose Return maximum number of samples that can be in log buffer

Prototype int xPCMaxLogSamples(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCMaxLogSamples function returns the total number of samples.
If there is an error, this function returns -1.

Description The xPCMaxLogSamples function returns the total number of samples
that can be returned in the logging buffers.

See Also API functions xPCNumLogSamples, xPCNumLogWraps, xPCGetStateLog,
xPCGetOutputLog, xPCGetTETLog, xPCGetTimeLog

Target object property MaxLogSamples

6-106

xPCMaximumTET

Purpose Copy maximum task execution time to array

Prototype void xPCMaximumTET(int port, double *data);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

data Array of at least two doubles.

Description The xPCMaximumTET function gets the maximum task execution time
(TET) that was achieved during the previous target application run.
This function also returns the time at which the maximum TET was
achieved. The xPCMaximumTET function then copies these values into the
data array. The maximum TET value is copied into the first element,
and the time at which it was achieved is copied into the second element.

See Also API functions xPCMinimumTET, xPCAverageTET

Target object property MaxTET

6-107

xPCMinimumTET

Purpose Copy minimum task execution time to array

Prototype void xPCMinimumTET(int port, double *data);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

data Array of at least two doubles.

Description The xPCMinimumTET function gets the minimum task execution time
(TET) that was achieved during the previous target application run.
This function also returns the time at which the minimum TET was
achieved. The xPCMinimumTET function then copies these values into the
data array. The minimum TET value is copied into the first element,
and the time at which it was achieved is copied into the second element.

See Also API functions xPCMaximumTET, xPCAverageTET

Target object property MinTET

6-108

xPCNumLogSamples

Purpose Return number of samples in log buffer

Prototype int xPCNumLogSamples(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCNumLogSamples function returns the number of samples in the
log buffer. If there is an error, this function returns -1.

Description The xPCNumLogSamples function returns the number of samples in
the log buffer. In contrast to xPCMaxLogSamples, which returns the
maximum number of samples that can be logged (because of buffer
size constraints), xPCNumLogSamples returns the number of samples
actually logged.

Note that the target application must be stopped before you get the
number.

See Also API functions xPCGetStateLog, xPCGetOutputLog, xPCGetTETLog,
xPCGetTimeLog, xPCMaxLogSamples

6-109

xPCNumLogWraps

Purpose Return number of times log buffer wraps

Prototype int xPCNumLogWraps(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCNumLogWraps function returns the number of times the log
buffer wraps. If there is an error, this function returns -1.

Description The xPCNumLogWraps function returns the number of times the log
buffer wraps.

See Also API functions xPCNumLogSamples, xPCMaxLogSamples, xPCGetStateLog,
xPCGetOutputLog, xPCGetTETLog, xPCGetTimeLog

Target object property NumLogWraps

6-110

xPCOpenConnection

Purpose Open connection to target PC

Prototype void xPCOpenConnection(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description The xPCOpenConnection function opens a connection to the target PC
whose data is indexed by port. Before calling this function, set up the
target information by calling xPCRegisterTarget. A call to either
xPCOpenSerialPort or xPCOpenTcpIpPort can also set up the target
information. If the port is already open, calling this function has no
effect.

See Also API functions xPCOpenTcpIpPort, xPCClosePort, xPCReOpenPort,
xPCTargetPing, xPCCloseConnection, xPCRegisterTarget

6-111

xPCOpenSerialPort

Purpose Open RS-232 connection to xPC Target™ system

Prototype int xPCOpenSerialPort(int comPort, int baudRate);

Arguments comPort Index of the COM port to be used (0 is COM1, 1 is
COM2, and so forth).

baudRate baudRate must be one of the following values: 1200,
2400, 4800, 9600, 19200, 38400, 57600, or 115200.

Return The xPCOpenSerialPort function returns the port value for the
connection. If there is an error, this function returns -1.

Description The xPCOpenSerialPort function initiates an RS-232 connection to an
xPC Target system. It returns the port value for the connection. Be
sure to pass this value to all the xPC Target API functions that require
a port value.

If you enter a value of 0 for baudRate, this function sets the baud rate to
the default value (115200).

See Also API functions xPCOpenTcpIpPort, xPCClosePort, xPCReOpenPort,
xPCTargetPing, xPCOpenConnection, xPCCloseConnection,
xPCRegisterTarget, xPCDeRegisterTarget

6-112

xPCOpenTcpIpPort

Purpose Open TCP/IP connection to xPC Target™ system

Prototype int xPCOpenTcpIpPort(const char *ipAddress, const char
*ipPort);

Arguments ipAddress Enter the IP address of the target as a dotted decimal
string. For example, "192.168.0.10".

ipPort Enter the associated IP port as a string. For example,
"22222".

Return The xPCOpenTcpIpPort function returns a nonnegative integer that you
can then use as the port value for any xPC Target API function that
requires it. If this operation fails, this function returns -1.

Description The xPCOpenTcpIpPort function opens a connection to the TCP/IP
location specified by the IP address. It returns a nonnegative integer if
it succeeds. Use this integer as the ipPort variable in the xPC Target
API functions that require a port value. The global error number is also
set, which you can get using xPCGetLastError.

See Also API functions xPCOpenSerialPort, xPCClosePort, xPCReOpenPort,
xPCTargetPing

6-113

xPCProtocol.Close

Purpose Close RS-232 or TCP/IP communication connection

Prototype long Close();

Member
Of

XPCAPICOMLib.xPCProtocol

Return If there is an error, the xPCProtocol.Close method returns 0. Upon
success, this method returns -1.

Description The xPCProtocol.Close method closes the communication channel
opened by xPCProtocol.RS232Connect or xPCProtocol.TcpIpConnect.

6-114

xPCProtocol.GetLoadTimeOut

Purpose Return current timeout value for target application initialization

Prototype long GetLoadTimeOut();

Member
Of

XPCAPICOMLib.xPCProtocol

Return If there is an error, the xPCProtocol.GetLoadTimeOut method returns
-1. Upon success, this method returns the number of seconds allowed
for the initialization of the target application.

Description The xPCProtocol.GetLoadTimeOut method returns the number of
seconds allowed for the initialization of the target application.

When you load a new target application onto the target PC, the
method xPCTarget.LoadApp waits for a certain amount of time before
checking to see whether the initialization of the target application is
complete. In the case where initialization of the target application is
not complete, the method xPCTarget.LoadApp returns a timeout error.
By default, xPCTarget.LoadApp checks five times to see whether the
target application is ready, with each attempt taking about 1 second.
However, in the case of larger models or models requiring longer
initialization (for example, those with thermocouple boards), the default
of about 5 seconds might not be sufficient and a spurious timeout is
generated. The method xPCProtocol.SetLoadTimeOut sets the timeout
to a different number.

Use the xPCProtocol.GetLoadTimeOut method if you suspect that the
current number of seconds (the timeout value) is too short. Then use
the xxPCProtocol.SetLoadTimeOut method to set the timeout to a
higher number.

6-115

xPCProtocol.GetxPCErrorMsg

Purpose Return error string

Prototype BSTR GetxPCErrorMsg();

Member
Of

XPCAPICOMLib.xPCProtocol

Return Upon success, the xPCProtocol.GetxPCErrorMsg method returns the
string for the last reported error.

Description The xPCProtocol.GetxPCErrorMsg method returns the string of the
last error reported by another COM API method. This value is reset
every time you call a new method. Therefore, you should check this
constant value immediately after a call to an API COM method. You
can use this method in conjunction with the xPCProtocol.isxPCError
method, which detects that an error has occurred.

See Also API function xPCProtocol.isxPCError

6-116

xPCProtocol.Init

Purpose Initialize xPC Target™ API DLL

Prototype long Init();

Member
Of

XPCAPICOMLib.xPCProtocol

Return If the xPC Target DLL, xpcapi.dll, loads successfully, the
xPCProtocol.Init method returns 0. If xpcapi.dll fails to load, this
method returns -1.

Description The xPCProtocol.Init method initializes the xPC Target API by
loading the xPC Target DLL, xpcapi.dll, into memory. To load
xpcapi.dll into memory, the method requires that the xpcapi.dll file
be in one of the following directories:

• The directory in which the application is loaded

• The current directory

• The Windows® system directory

6-117

xPCProtocol.isxPCError

Purpose Return error status

Prototype long isxPCError();

Member
Of

XPCAPICOMLIB.xPCProtocol

Return If there is an error, the xPCProtocol.isxPCError method returns 1.
Upon success, this method returns the error status.

Description The xPCProtocol.isxPCError method returns the error status. Use
this method to check for any errors that might occur after a call to
any of the xPCProtocol class methods. If there is an error, call the
xPCProtocol.GetxPCErrorMsg to get the string for the error.

See Also API function xPCProtocol.GetxPCErrorMsg

6-118

xPCProtocol.Port

Purpose Contain communication channel index

Prototype long Port();

Member
Of

XPCAPICOMLIB.xPCProtocol

Return If there is an error, the xPCProtocol.Port method returns a nonpositive
number. Upon success, this method returns a positive number (the
communication channel index).

Description The xPCProtocol.Port property contains the communication channel
index if connection with the target PC succeeds. Note that you only
need to use this property when working with a model-specific COM
library that you generate from a Simulink® model. See “Model-Specific
COM Interface Library (model_nameCOMiface.dll)” on page 3-18.

6-119

xPCProtocol.Reboot

Purpose Reboot target PC

Prototype long Reboot();

Member
Of

XPCAPICOMLib.xPCProtocol

Return If there is an error, the xPCProtocol.Reboot method returns 0. Upon
success, this method returns -1.

Description The xPCProtocol.Reboot method reboots the target PC. This function
does not close the connection to the target PC. You should explicitly
close the connection, then reestablish the connection once the target
PC has rebooted. Use the methods xPCProtocol.RS232Connect or
xPCProtocol.TcpIpConnect to reestablish the connection.

6-120

xPCProtocol.RS232Connect

Purpose Open RS-232 connection to target PC

Prototype long RS232Connect(long comport, long baudrate);

Member
Of

XPCAPICOMLib.xPCProtocol

Arguments [in] comport Index of the COM port to be used (0 is COM1, 1 is
COM2, and so forth).

[in] baudrate baudrate must be one of the following values: 1200,
2400, 4800, 9600, 19200, 38400, 57600, or 115200.

Return The xPCProtocol.RS232Connect method returns the port value for the
connection. If there is an error, this method returns 0. Upon success,
this method returns -1.

Description The xPCProtocol.RS232Connect method initiates an RS-232
connection to an xPC Target™ system. It returns the port value for
the connection. Be sure to pass this value to all the xPC Target API
functions that require a port value.

If you enter a value of 0 for baudrate, this function sets the baud rate to
the default value (115200).

6-121

xPCProtocol.SetLoadTimeOut

Purpose Change initialization timeout value

Prototype long SetLoadTimeOut(long timeOut);

Member
Of

XPCAPICOMLib.xPCProtocol

Arguments [in] timeOut Enter the new initialization timeout value.

Return If there is an error, the xPCProtocol.SetLoadTimeOut method returns
0. Upon success, this method method returns -1. To get the string
description for the error, use xPCProtocol.GetxPCErrorMsg.

Description The xPCProtocol.SetLoadTimeOut method changes the timeout
value for initialization. The timeOut value is the time the method
xPCTarget.LoadApp waits to check whether the model initialization for
a new application is complete before returning. It enables you to set the
number of initialization attempts to be made before signaling a timeout.
When a new target application is loaded onto the target PC, the method
xPCTarget.LoadApp waits for a certain time to check whether the model
initialization is complete before returning. If the model initialization
is incomplete within the allotted time, xPCTarget.LoadApp returns
a timeout error.

By default, xPCTarget.LoadApp checks for target readiness five times,
with each attempt taking approximately 1 second (less if the target
is ready). However, in the case of larger models or models requiring
longer initialization (for example, models with thermocouple boards),
the default of about 5 seconds might be insufficient and a spurious
timeout can be generated.

6-122

xPCProtocol.TargetPing

Purpose Ping target PC

Prototype long TargetPing;

Member
Of

XPCAPICOMLIB.xPCProtocol

Return The xPCProtocol.TargetPing method does not return an error status.
This method returns 1 if it successfully reaches the target. If the target
PC does not respond, the method returns 0.

Description The xPCProtocol.TargetPing method pings the target PC and returns
1 or 0 depending on whether the target responds or not. All errors, such
as the inability to connect to the target, are ignored.

If you are using TCP/IP, note that xPCProtocol.xPCTargetPing
will cause the target PC to close the TCP/IP connection. You can
use xPCProtocol.TcpIpConnect to reconnect. You can also use this
xPCProtocol.xPCTargetPing feature to close the target PC connection
in the event of an aborted TCP/IP connection (for example, if your host
side program crashes).

6-123

xPCProtocol.TcpIpConnect

Purpose Open TCP/IP connection to target PC

Prototype long TcpIpConnect(BSTR TargetIpAddress, BSTR TargetPort);

Member
Of

XPCAPICOMLIB.xPCProtocol

Arguments [in] TargetIpAddress Enter the IP address of the target
as a dotted decimal string. For
example, "192.168.0.10".

[in] TargetPort Enter the associated IP port as a
string. For example, "22222".

Return If there is an error, the xPCProtocol.TcpIpConnect method returns 0.
Upon success, this method returns -1.

Description The xPCProtocol.TcpIpConnect method opens a connection to the
TCP/IP location specified by the IP address. Use this integer as the
TargetPort variable in the xPC Target™ COM API functions that
require a port value.

6-124

xPCProtocol.Term

Purpose Unload xPC Target™ API DLL from memory

Prototype long Term();

Member
Of

XPCAPICOMLib.xPCProtocol

Return The xPCProtocol.Term method always returns -1.

Description The xPCProtocol.Term method unloads the xPC Target API DLL
(xpcapi.dll) from memory. You must call this method when you want
to terminate your COM API application.

6-125

xPCReboot

Purpose Reboot target PC

Prototype void xPCReboot(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description The xPCReboot function reboots the target PC. This function returns
nothing. This function does not close the connection to the target PC.
You should either explicitly close the port or call xPCReOpenPort once
the target PC has rebooted.

See Also API function xPCReOpenPort

Target object method reboot

6-126

xPCReOpenPort

Purpose Reopen communication channel

Prototype int xPCReOpenPort(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCReOpenPort function returns 0 if it successfully reopens a
connection. If there is an error, this function returns -1.

Description The xPCReOpenPort function reopens the communications channel
pointed to by port. The difference between this function and
xPCOpenSerialPort or xPCOpenTcpIpPort is that xPCReOpenPort uses
the already existing settings, while the other functions need to be set
up properly.

See Also API functions xPCOpenTcpIpPort, xPCClosePort

6-127

xPCRegisterTarget

Purpose Register target with xPC Target™ API library

Prototype int xPCRegisterTarget(int commType, const char *ipAddress,
const char *ipPort, int comPort, int baudRate);

Arguments commType Specify the communication type (TCP/IP or RS-232)
between the host and the target.

ipAddress Enter the IP address of the target as a dotted decimal
string. For example, "192.168.0.10".

ipPort Enter the associated IP port as a string. For example,
"22222".

comPort comPort and baudRate are as in xPCOpenSerialPort.

baudRate The baudRate must be one of the following values: 1200,
2400, 4800, 9600, 19200, 38400, 57600, or 115200.

Return The xPCRegisterTarget function returns the port number.

Description The xPCRegisterTarget function works similarly to
xPCOpenSerialPort and xPCOpenTcpIpPort, except that it does
not try to open a connection to the target PC. In other words,
xPCOpenSerialPort or xPCOpenTcpIpPort is equivalent to calling
xPCRegisterTarget with the appropriate parameters, followed by a
call to xPCOpenConnection.

Use the constants COMMTYP_TCPIP and COMMTYP_RS232 for commType.
If commType is set to COMMTYP_RS232, the function ignores ipAddress
and ipPort. Analogously, the function ignores comPort and baudRate if
commType is set to COMMTYP_TCPIP.

If you enter a value of 0 for baudRate, this function sets the baud rate to
the default value (115200).

6-128

xPCRegisterTarget

See Also API functions xPCDeRegisterTarget, xPCOpenTcpIpPort,
xPCOpenSerialPort, xPCClosePort, xPCReOpenPort,
xPCOpenConnection, xPCCloseConnection, xPCTargetPing

6-129

xPCRemScope

Purpose Remove scope

Prototype void xPCRemScope(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Description The xPCRemScope function removes the scope with number scNum.
Attempting to remove a nonexistent scope causes an error. For a list
of existing scopes, see xPCGetScopes. Use the xPCGetScope function
to get the scope number.

See Also API functions xPCAddScope, xPCScRemSignal, xPCGetScopes

Target object method remscope

6-130

xPCSaveParamSet

Purpose Save parameter values of target application

Prototype void xPCSaveParamSet(int port, const char *filename);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

filename Enter the name of the file to contain the saved parameters.

Description The xPCSaveParamSet function saves the target application parameter
values in the file filename. This function saves the file on a local drive
of the current target PC. You can later reload these parameters with the
xPCLoadParamSet function.

You might want to save target application parameter values if you
change these parameter values while the application is running in
real time. Saving these values enable you to easily recreate target
application parameter values from a number of application runs.

See Also API function xPCLoadParamSet

6-131

xPCScAddSignal

Purpose Add signal to scope

Prototype void xPCScAddSignal(int port, int scNum, int sigNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

sigNum Enter a signal number.

Description The xPCScAddSignal function adds the signal with number sigNum to
the scope scNum. The signal should not already exist in the scope. You
can use xPCScGetSignals to get a list of the signals already present.
Use the function xPCGetScope to get the scope number. Use the
xPCGetSignalIdx function to get the signal number.

See Also API functions xPCScRemSignal, xPCAddScope, xPCRemScope,
xPCGetScopes

Scope object method addsignal

6-132

xPCScGetData

Purpose Copy scope data to array

Prototype void xPCScGetData(int port, int scNum, int
signal_id, int start,
int numsamples, int decimation, double *data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

signal_id Enter a signal number.

start Enter the first sample from which data retrieval is
to start

numsamples Enter the number of samples retrieved with a
decimation of decimation, starting from the start
value.

decimation Enter a value such that every decimation sample
is retrieved in a scope window.

data The data is available in the array data, starting
from sample start.

Description The xPCScGetData function gets the data used in a scope. Use this
function for scopes of type SCTYPE_HOST. The scope must be either
in state "Finished" or in state "Interrupted" for the data to be
retrievable. (Use the xPCScGetState function to check the state of the
scope.) The data must be retrieved one signal at a time. The calling
function must allocate the space ahead of time to store the scope data.
data must be an array of doubles, regardless of the data type of the
signal to be retrieved. Use the function xPCScGetSignals to get the list
of signals in the scope for signal_id. Use the function xPCGetScope to
get the scope number for scNum.

6-133

xPCScGetData

See Also API functions xPCGetScope, xPCScGetState, xPCScGetSignals

Scope object property Data

6-134

xPCScGetDecimation

Purpose Return decimation of scope

Prototype int xPCScGetDecimation(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetDecimation function returns the decimation of scope
scNum. If there is an error, this function returns -1.

Description The xPCScGetDecimation function gets the decimation of scope scNum.
The decimation is a number, N, meaning every Nth sample is acquired in
a scope window. Use the xPCGetScope function to get the scope number.

See Also API function xPCScSetDecimation

Scope object property Decimation

6-135

xPCScGetNumPrePostSamples

Purpose Get number of pre- or posttriggering samples before triggering scope

Prototype int xPCScGetNumPrePostSamples(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetNumPrePostSamples function returns the number of
samples for pre- or posttriggering for scope scNum. If an error occurs,
this function returns the minimum integer value (-2147483647-1).

Description The xPCScGetNumPrePostSamples function gets the number of samples
for pre- or posttriggering for scope scNum. A negative number implies
pretriggering, whereas a positive number implies posttriggering
samples. Use the xPCGetScope function to get the scope number.

See Also API function xPCScSetNumPrePostSamples

Scope object property NumPrePostSamples

6-136

xPCScGetNumSamples

Purpose Get number of samples in one data acquisition cycle

Prototype int xPCScGetNumSamples(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetNumSamples function returns the number of samples in
the scope scNum. If there is an error, this function returns -1.

Description The xPCScGetNumSamples function gets the number of samples in one
data acquisition cycle for scope scNum. Use the xPCGetScope function
to get the scope number.

See Also API function xPCScSetNumSamples

Scope object property NumSamples

6-137

xPCScGetSignals

Purpose Copy list of signals to array

Prototype void xPCScGetSignals(int port, int scNum, int *data);

Arguments port Value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

data Integer array allocated by the caller as a list containing
the signal identifiers, terminated by -1.

Description The xPCScGetSignals function gets the list of signals defined for
scope scNum. You can use the constant MAX_SIGNALS, defined in
xpcapiconst.h, as the size of data. Use the xPCGetScope function
to get the scope number.

See Also API functions xPCScGetData, xPCGetScopes

Scope object property Signals

6-138

xPCScGetStartTime

Purpose Get start time for last data acquisition cycle

Prototype double xPCScGetStartTime(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetStartTime function returns the start time for the last data
acquisition cycle of a scope. If there is an error, this function returns -1.

Description The xPCScGetStartTime function gets the time at which the last data
acquisition cycle for scope scNum started. This is only valid for scopes
of type SCTYPE_HOST. Use the xPCGetScope function to get the scope
number.

See Also API functions xPCScGetNumSamples, xPCScGetDecimation

Scope object property StartTime

6-139

xPCScGetState

Purpose Get state of scope

Prototype int xPCScGetState(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetState function returns the state of scope scNum. If there
is an error, this function returns -1.

Description The xPCScGetState function gets the state of scope scNum, or -1 upon
error. Use the xPCGetScope function to get the scope number.

Constants to find the scope state, defined in xpcapiconst.h, have the
following meanings:

Constant Value Description

SCST_WAITTOSTART 0 Scope is ready and waiting to start.

SCST_PREACQUIRING 5 Scope acquires a predefined number
of samples before triggering.

SCST_WAITFORTRIG 1 After a scope is finished with the
preacquiring state, it waits for
a trigger. If the scope does not
preacquire data, it enters the wait
for trigger state.

SCST_ACQUIRING 2 Scope is acquiring data. The scope
enters this state when it leaves the
wait for trigger state.

6-140

xPCScGetState

Constant Value Description

SCST_FINISHED 3 Scope is finished acquiring data
when it has attained the predefined
limit.

SCST_INTERRUPTED 4 The user has stopped (interrupted)
the scope.

See Also API functions xPCScStart, xPCScStop

Scope object property Status

6-141

xPCScGetTriggerLevel

Purpose Get trigger level for scope

Prototype double xPCScGetTriggerLevel(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerLevel function returns the scope trigger level.
If there is an error, this function returns -1.

Description The xPCScGetTriggerLevel function gets the trigger level for scope
scNum. Use the xPCGetScope function to get the scope number.

See Also API functions xPCScSetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScSetTriggerMode, xPCScGetTriggerMode

Scope object property TriggerLevel

6-142

xPCScGetTriggerMode

Purpose Get trigger mode for scope

Prototype int xPCScGetTriggerMode(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerMode function returns the scope trigger mode. If
there is an error, this function returns -1.

Description The xPCScGetTriggerMode function gets the trigger mode for scope
scNum. Use the xPCGetScope function to get the scope number. Use
the constants defined in xpcapiconst.h to interpret the trigger mode.
These constants include the following:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode. The
scope always triggers when it
is ready to trigger, regardless
of the circumstances.

TRIGMD_SOFTWARE 1 Only a user can trigger the
scope. It is always possible
for a user to trigger the scope;
however, if you set the scope
to this trigger mode, user
intervention is the only way
to trigger the scope. No other
triggering is possible.

6-143

xPCScGetTriggerMode

Constant Value Description

TRIGMD_SIGNAL 2 Signal must cross a value
before the scope is triggered.

TRIGMD_SCOPE 3 Scope is triggered by another
scope at the trigger point
of the triggering scope,
modified by the value of
triggerscopesample (see
scopedata).

See Also API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope,
xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode

Scope object method trigger

Scope object property TriggerMode

6-144

xPCScGetTriggerScope

Purpose Get trigger scope

Prototype int xPCScGetTriggerScope(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerScope function returns a trigger scope. If there is
an error, this function returns -1.

Description The xPCScGetTriggerScope function gets the trigger scope for scope
scNum. Use the xPCGetScope function to get the scope number.

See Also API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope,
xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerMode, xPCScGetTriggerMode

Scope object property TriggerScope

6-145

xPCScGetTriggerScopeSample

Purpose Get sample number for triggering scope

Prototype int xPCScGetTriggerScopeSample(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerScopeSample function returns a nonnegative
integer for a real sample, and -1 for the special case where triggering is
at the end of the data acquisition cycle for a triggering scope. If there is
an error, this function returns INT_MIN (-2147483647-1).

Description The xPCScGetTriggerScopeSample function gets the number of
samples a triggering scope (scNum) acquires before starting data
acquisition on a second scope. This value is a nonnegative integer for a
real sample, and -1 for the special case where triggering is at the end of
the data acquisition cycle for a triggering scope. Use the xPCGetScope
function to get the scope number for the trigger scope.

See Also API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope,
xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode, xPCScGetTriggerMode,
xPCScSetTriggerScopeSample

Scope object property TriggerSample

6-146

xPCScGetTriggerSignal

Purpose Get trigger signal for scope

Prototype int xPCScGetTriggerSignal(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerSignal function returns the scope trigger signal.
If there is an error, this function returns -1.

Description The xPCScGetTriggerSignal function gets the trigger signal for scope
scNum. Use the xPCGetScope function to get the scope number for the
trigger scope.

See Also API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope,
xPCScSetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScSetTriggerMode, xPCScGetTriggerMode

Scope object method trigger

Scope object property TriggerSignal

6-147

xPCScGetTriggerSlope

Purpose Get trigger slope for scope

Prototype int xPCScGetTriggerSlope(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerSlope function returns the scope trigger slope.
If there is an error, this function returns -1.

Description The xPCScGetTriggerSlope function gets the trigger slope of scope
scNum. Use the xPCGetScope function to get the scope number for the
trigger scope. Use the constants defined in xpcapiconst.h to interpret
the trigger slope. These constants have the following meanings:

Constant Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either
rising or falling.

TRIGSLOPE_RISING 1 The trigger slope must be
rising when the signal crosses
the trigger value.

TRIGSLOPE_FALLING 2 The trigger slope must be
falling when the signal crosses
the trigger value.

6-148

xPCScGetTriggerSlope

See Also API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScSetTriggerMode, xPCScGetTriggerMode

Scope object method trigger

Scope object properties TriggerMode, TriggerSlope

6-149

xPCScGetType

Purpose Get type of scope

Prototype int xPCScGetType(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetType function returns the scope type. If there is an error,
this function returns -1.

Description The xPCScGetType function gets the type (SCTYPE_HOST for host,
SCTYPE_TARGET for target, or SCTYPE_FILE for file) of scope scNum. Use
the constants defined in xpcapiconst.h to interpret the return value.
A scope of type SCTYPE_HOST is displayed on the host PC while a scope
of type SCTYPE_TARGET is displayed on the target PC screen. A scope of
type SCTYPE_FILE is stored on a storage medium. Use the xPCGetScope
function to get the scope number.

See Also API functions xPCAddScope, xPCRemScope

Scope object property Type

6-150

xPCScopes.AddFileScope

Purpose Create new scope of type file

Prototype long AddFileScope(long scNum);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] scNum Enter a number for a new scope. Values are 1, 2,
3. . .

Return If there is an error, the xPCScopes.AddFileScope method returns 0.
Upon success, this method returns -1.

Description The xPCScopes.AddFileScope method creates a new scope of type file
on the target PC.

Calling the xPCScopes.AddFileScope method with scNum
having the number of an existing scope produces an error. Use
xPCScopes.GetScopes to find the numbers of existing scopes.

6-151

xPCScopes.AddHostScope

Purpose Create new scope of type host

Prototype long AddHostScope(long scNum);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] scNum Enter a number for a new scope. Values are 1, 2,
3. . .

Return If there is an error, the xPCScopes.AddHostScope method returns 0.
Upon success, this method returns -1.

Description The xPCScopes.AddHostScope method creates a new scope of type host
on the target PC.

Calling the xPCScopes.AddHostScope method with scNum
having the number of an existing scope produces an error. Use
xPCScopes.GetScopes to find the numbers of existing scopes.

6-152

xPCScopes.AddTargetScope

Purpose Create new scope of type target

Prototype long AddTargetScope(long scNum);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] scNum Enter a number for a new scope. Values are 1,
2, 3. . .

Return If there is an error, the xPCScopes.AddTargetScope method returns 0.
Upon success, this method returns -1.

Description If there is an error, this function returns 0. The
xPCScopes.AddTargetScope method creates a new scope on
the target PC.

Calling the xPCScopes.AddTargetScope method with scNum
having the number of an existing scope produces an error. Use
xPCScopes.GetScopes to find the numbers of existing scopes.

6-153

xPCScopes.GetScopes

Purpose Get and copy list of scope numbers

Prototype VARIANT GetScopes(long size);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] size Specify the size of the VARIANT array returned. This
argument must be greater than MAX_SCOPES-1. The
elements in the array consist of a list of unsorted
integers, terminated by -1.

Return The xPCScopes.GetScopes method returns a VARIANT array with
elements containing a list of scope numbers from the target application.

Description The xPCScopes.GetScopes method gets a VARIANT array with elements
containing a list of scope numbers currently defined for the target
application. Specify the size of the VARIANT array returned. This size
must be greater than the maximum number of scopes -1, up to a
maximum of 30 scopes. The elements in the array consist of a list of
unsorted integers, terminated by -1.

6-154

xPCScopes.GetxPCError

Purpose Get error string

Prototype BSTR GetxPCError();

Member
Of

XPCAPICOMLib.xPCScopes

Return The xPCScopes.GetxPCError method returns the string for the last
reported error. If there is no error, this method returns 0.

Description The xPCScopes.GetxPCError method gets the string of the last
reported error by another COM API method. This value is reset every
time you call a new method. Therefore, you should check this constant
value immediately after a call to an API COM method. You can use this
method in conjunction with the xPCScopes.isxPCError method, which
detects that an error has occurred.

See Also API function xPCScopes.isxPCError

6-155

xPCScopes.Init

Purpose Initialize scope object to communicate with target PC

Prototype long Init(IxPCProtocol* xPCProtocol);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] xPCProtocol Specify the communication port of the target
PC object for which the scope is to be initialized.

Return If the xPCScopes.Init method initializes the scope object successfully,
it returns 0. If the scope object fails to initialize, this method returns -1.

Description The xPCScopes.Init method initializes the scope object to communicate
with the target PC referenced by the xPCProtocol object.

6-156

xPCScopes.IsScopeFinished

Purpose Get data acquisition status for scope

Prototype long IsScopeFinished(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If there is an error, the xPCScopeos.IsScopeFinished method returns
-1. If a scope finishes a data acquisition cycle, this method returns 1. If
the scope is in the process of acquiring data, this method returns 0.

Description The xPCScopeos.IsScopeFinished method gets a 1 or 0 depending on
whether scope scNum is finished (state of SCST_FINISHED) or not. You
can also call this function for scopes of type target; however, because
target scopes restart immediately, it is almost impossible to find these
scopes in the finished state.

6-157

xPCScopes.isxPCError

Purpose Get error status

Prototype long isxPCError();

Member
Of

XPCAPICOMLIB.xPCScopes

Return The xPCScopes.isxPCError method returns the error status. If there is
an error, this method returns 1. Upon success, this method returns 0.

Description The xPCProtocol.isxPCError method gets the error status. Use
this method to check for any errors that might occur after a call to
any of the xPCScopes class methods. If there is an error, call the
xPCScopes.GetxPCError method to get the string for the error.

See Also API function xPCScopes.GetxPCError

6-158

xPCScopes.RemScope

Purpose Remove scope

Prototype long RemScope(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If there is an error, the xPCScopes.RemScope method returns 0. Upon
success, this method returns -1.

Description The xPCScopes.RemScope method removes the scope with number
scNum. Attempting to remove a nonexistent scope causes an error. For a
list of existing scopes, use xPCScopes.GetScopes.

6-159

xPCScopes.ScopeAddSignal

Purpose Add signal to scope

Prototype long ScopeAddSignal(long scNum, long sigNum);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] sigNum Enter a signal number.

Return If there is an error, the xPCScopes.ScopeAddSignal method returns 0.
Upon success, this method returns -1.

Description The xPCScopes.ScopeAddSignal method adds the signal with number
sigNum to the scope scNum. The signal should not already exist in the
scope. You can use xPCScopes.ScopeGetSignals to get a list of the
signals already present. Use the xPCTarget.GetSignalIdx method
to get the signal number.

6-160

xPCScopes.ScopeGetData

Purpose Copy scope data to array

Prototype VARIANT ScopeGetData(long scNum, long signal_id,
long start,
long numsamples, long decimation);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] signal_id Enter a signal number.

[in] start Enter the first sample from which data
retrieval is to start.

[in] numsamples Enter the number of samples retrieved
with a decimation of decimation, starting
from the start value.

[in] decimation Enter a value such that every decimation
sample is retrieved in a scope window.

Return The xPCScopes.ScopeGetData method returns a VARIANT array with
elements containing the data used in a scope.

Description The xPCScopes.ScopeGetData method gets the data used in a scope.
Use this function for scopes of type SCTYPE_HOST. The scope must be
either in state Finished or in state Interrupted for the data to be
retrievable. (Use the xPCScopes.ScopeGetState method to check the
state of the scope.) The data must be retrieved one signal at a time. The
calling function determines and allocates the space ahead of time to
store the scope data. Use the method xPCScopes.ScopeGetSignals to
get the list of signals in the scope for signal_id.

6-161

xPCScopes.ScopeGetDecimation

Purpose Get decimation of scope

Prototype long ScopeGetDecimation(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetDecimation method returns the decimation
of scope scNum. If there is an error, this function returns -1.

Description The xPCScopes.ScopeGetDecimation method gets the decimation of
scope scNum. The decimation is a number, N, meaning every Nth sample
is acquired in a scope window.

6-162

xPCScopes.ScopeGetNumPrePostSamples

Purpose Get number of pre- or posttriggering samples before triggering scope

Prototype long ScopeGetNumPrePostSamples(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetNumPrePostSamples method returns the
number of samples for pre- or posttriggering for scope scNum. If an
error occurs, this method returns -1.

Description The xPCScopes.ScopeGetNumPrePostSamples method gets the number
of samples for pre- or posttriggering for scope scNum. A negative number
implies pretriggering, whereas a positive number implies posttriggering
samples.

6-163

xPCScopes.ScopeGetNumSamples

Purpose Get number of samples in one data acquisition cycle

Prototype long ScopeGetNumSamples(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetNumSamples method returns the number of
samples in the scope scNum. If there is an error, this method returns -1.

Description The xPCScopes.ScopeGetNumSamples method gets the number of
samples in one data acquisition cycle for scope scNum.

6-164

xPCScopes.ScopeGetSignals

Purpose Get list of signals

Prototype VARIANT ScopeGetSignals(long scNum, long size);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] size Enter an integer to allocate the number of elements
to be returned in the VARIANT array. This size is
required for the method to copy the list of signals
into the VARIANT array. The maximum number of
signals is 10.

Return The xPCScopes.ScopeGetSignals method returns a VARIANT array
with elements consisting of the list of signals defined for a scope.

Description The xPCScopes.ScopeGetSignals method gets the list of signals
defined for scope scNum. You can use the constant MAX_SIGNALS.

6-165

xPCScopes.ScopeGetStartTime

Purpose Get last data acquisition cycle start time

Prototype double ScopeGetStartTime(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetStartTime method returns the start time
for the last data acquisition cycle of a scope. If there is an error, this
method returns -1.

Description The xPCScopes.ScopeGetStartTime method gets the time at which the
last data acquisition cycle for scope scNum started. This is only valid
for scopes of type SCTYPE_HOST.

6-166

xPCScopes.ScopeGetState

Purpose Get state of scope

Prototype BSTR ScopeGetState(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetState method returns the state of scope
scNum. If there is an error, this method returns -1.

Description The xPCScopes.ScopeGetState method gets the state of scope scNum,
or -1 upon error.

Constants to find the scope state have the following meanings:

Constant Value Description

SCST_WAITTOSTART 0 Scope is ready and waiting to
start.

SCST_PREACQUIRING 5 Scope acquires a predefined
number of samples before
triggering.

SCST_WAITFORTRIG 1 After a scope is finished with
the preacquiring state, it waits
for a trigger. If the scope does
not preacquire data, it enters
the wait for trigger state.

SCST_ACQUIRING 2 Scope is acquiring data. The
scope enters this state when
it leaves the wait for trigger
state.

6-167

xPCScopes.ScopeGetState

Constant Value Description

SCST_FINISHED 3 Scope is finished acquiring
data when it has attained the
predefined limit.

SCST_INTERRUPTED 4 The user has stopped
(interrupted) the scope.

6-168

xPCScopes.ScopeGetTriggerLevel

Purpose Get trigger level for scope

Prototype double ScopeGetTriggerLevel(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerLevel method returns the scope
trigger level. If there is an error, this method returns -1.

Description The xPCScopes.ScopeGetTriggerLevel method gets the trigger level
for scope scNum.

6-169

xPCScopes.ScopeGetTriggerMode

Purpose Get trigger mode for scope

Prototype long ScopeGetTriggerMode(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerMode method returns the scope
trigger mode. If there is an error, this method returns -1.

Description The xPCScopes.ScopeGetTriggerMode method gets the trigger mode
for scope scNum. Use the constants here to interpret the trigger mode:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode. The
scope always triggers when it
is ready to trigger, regardless
of the circumstances.

TRIGMD_SOFTWARE 1 Only a user can trigger the
scope. It is always possible
for a user to trigger the scope;
however, if you set the scope
to this trigger mode, user
intervention is the only way
to trigger the scope. No other
triggering is possible.

6-170

xPCScopes.ScopeGetTriggerMode

Constant Value Description

TRIGMD_SIGNAL 2 Signal must cross a value
before the scope is triggered.

TRIGMD_SCOPE 3 Scope is triggered by another
scope at the trigger point
of the triggering scope,
modified by the value of
triggerscopesample (see
scopedata).

See Also API function xPCScopes.ScopeGetTriggerModeStr

6-171

xPCScopes.ScopeGetTriggerModeStr

Purpose Get trigger mode as string

Prototype BSTR ScopeGetTriggerModeStr(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerModeStr method returns a string
containing the trigger mode string.

Description The xPCScopes.ScopeGetTriggerModeStr method gets the trigger
mode string for scope scNum. This method returns one of the following
strings.

Constant Description

FreeRun There is no trigger mode. The scope always
triggers when it is ready to trigger, regardless of
the circumstances.

Software Only a user can trigger the scope. It is always
possible for a user to trigger the scope; however,
if you set the scope to this trigger mode, user
intervention is the only way to trigger the scope.
No other triggering is possible.

Signal Signal must cross a value before the scope is
triggered.

Scope Scope is triggered by another scope at the trigger
point of the triggering scope, modified by the value
of triggerscopesample (see scopedata).

See Also API function xPCScopes.ScopeGetTriggerMode

6-172

xPCScopes.ScopeGetTriggerSample

Purpose Get sample number for triggering scope

Prototype long ScopeGetTriggerSample(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerSample method returns a nonnegative
integer for a real sample, and -1 for the special case where triggering is
at the end of the data acquisition cycle for a triggering scope. If there is
an error, this method returns -1.

Description The xPCScopes.ScopeGetTriggerSample method gets the number
of samples a triggering scope (scNum) acquires before starting data
acquisition on a second scope. This value is a nonnegative integer for a
real sample, and -1 for the special case where triggering is at the end of
the data acquisition cycle for a triggering scope.

6-173

xPCScopes.ScopeGetTriggerSignal

Purpose Get trigger signal for scope

Prototype long ScopeGetTriggerSignal(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerSignal method returns the scope
trigger signal. If there is an error, this method returns -1.

Description The xPCScopes.ScopeGetTriggerSignal method gets the trigger
signal for scope scNum.

6-174

xPCScopes.ScopeGetTriggerSlope

Purpose Get trigger slope for scope

Prototype long ScopeGetTriggerSlope(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerSlope method returns the scope
trigger slope. If there is an error, this method returns -1.

Description The xPCScopes.ScopeGetTriggerSlope method gets the trigger slope
of scope scNum. Use the constants here to interpret the trigger slope:

String Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either
rising or falling.

TRIGSLOPE_RISING 1 The trigger slope must be
rising when the signal crosses
the trigger value.

TRIGSLOPE_FALLING 2 The trigger slope must be
falling when the signal
crosses the trigger value.

See Also API function xPCScopes.ScopeGetTriggerSlopeStr

6-175

xPCScopes.ScopeGetTriggerSlopeStr

Purpose Get trigger slope as string

Prototype BSTR ScopeGetTriggerSlopeStr(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerSlopeStr method returns a string
containing the trigger slope string.

Description The xPCScopes.ScopeGetTriggerSlopeStr method gets the trigger
slope string for scope scNum. This method returns one of the following
strings:

See Also API function xPCScopes.ScopeGetTriggerSlope

6-176

xPCScopes.ScopeGetType

Purpose Get type of scope

Prototype BSTR ScopeGetType(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetType method returns the scope type as a
string. If there is an error, this method returns -1.

Description The xPCScopes.ScopeGetType method gets the type of scope scNum.
This method returns one of the following strings:

String Description

HOST Scope of type host

Target Scope of type target

6-177

xPCScopes.ScopeRemSignal

Purpose Remove signal from scope

Prototype long ScopeRemSignal(long scNum, long sigNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] sigNum Enter a signal number.

Return If there is an error, the xPCScopes.ScopeRemSignal method returns 0.
Upon success, this method returns -1.

Description The xPCScopes.ScopeRemSignal method removes a signal from the
scope with number scNum. The scope must already exist, and signal
number sigNum must exist in the scope. Use xPCScopes.GetScopes to
determine the existing scopes, and use xPCScopes.ScopeGetSignals
to determine the existing signals for a scope. Use this function only
when the scope is stopped. Use xPCScopes.ScopeGetState to check
the state of the scope.

6-178

xPCScopes.ScopeSetDecimation

Purpose Set decimation of scope

Prototype long ScopeSetDecimation(long scNum, long decimation);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] decimation Enter an integer for the decimation.

Return If there is an error, the xPCScopes.ScopeSetDecimation method
returns 0. Upon success, this method returns -1.

Description The xPCScopes.ScopeSetDecimation method sets the decimation of
scope scNum. The decimation is a number, N, meaning every Nth sample
is acquired in a scope window. Use this function only when the scope is
stopped. Use xPCScopes.ScopeGetState to check the state of the scope.

6-179

xPCScopes.ScopeSetNumPrePostSamples

Purpose Set number of pre- or posttriggering samples before triggering scope

Prototype long ScopeSetNumPrePostSamples(long scNum, long prepost);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] prepost A negative number means pretriggering, while
a positive number means posttriggering. This
function can only be used when the scope is
stopped.

Return If there is an error, the xPCScopes.ScopeSetNumPrePostSamples
method returns 0. Upon success, this method returns -1.

Description The xPCScopes.ScopeSetNumPrePostSamples method sets the number
of samples for pre- or posttriggering for scope scNum to prepost. Use this
method only when the scope is stopped. Use xPCScopes.ScopeGetState
to check the state of the scope. Use the xPCScopes.GetScopes method
to get a list of scope numbers.

6-180

xPCScopes.ScopeSetNumSamples

Purpose Set number of samples in one data acquisition cycle

Prototype long ScopeSetNumSamples(long scNum, long samples);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] samples Enter the number of samples you want to acquire
in one cycle.

Return If there is an error, th xPCScopes.ScopeSetNumSamples method returns
0. Upon success, this method returns -1.

Description The xPCScopes.ScopeSetNumSamples method sets the number of
samples for scope scNum to samples. Use this function only when the
scope is stopped. Use xPCScopes.ScopeGetState to check the state
of the scope.

6-181

xPCScopes.ScopeSetTriggerLevel

Purpose Set trigger level for scope

Prototype long ScopeSetTriggerLevel(long scNum, double level);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] level Value for a signal to trigger data acquisition with
a scope.

Return If there is an error, the xPCScopes.ScopeSetTriggerLevel method
returns 0. Upon success, this method returns -1.

Description The xPCScopes.ScopeSetTriggerLevel method sets the trigger level
level for scope scNum. Use this function only when the scope is stopped.
Use xPCScopes.ScopeGetState to check the state of the scope.

6-182

xPCScopes.ScopeSetTriggerMode

Purpose Set trigger mode of scope

Prototype long ScopeSetTriggerMode(long scNum, long triggermode);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] triggermode Trigger mode for a scope.

Return If there is an error, the xPCScopes.ScopeSetTriggerMode method
returns 0. Upon success, this method returns -1.

Description The xPCScopes.ScopeSetTriggerMode method sets the trigger mode of
scope scNum to triggermode. Use this method only when the scope is
stopped. Use xPCScopes.ScopeGetState to check the state of the scope.
Use the xPCScopes.GetScopes method to get a list of scopes.

Use the constants defined here to interpret the trigger mode:

Constant Value Description

TRIGMD_FREERUN 0 The scope always triggers
when it is ready to
trigger, regardless of the
circumstances. This is the
default.

6-183

xPCScopes.ScopeSetTriggerMode

Constant Value Description

TRIGMD_SOFTWARE 1 Only a user can trigger the
scope. It is always possible
for a user to trigger the scope;
however, if you set the scope
to this trigger mode, user
intervention is the only way
to trigger the scope. No other
triggering is possible.

TRIGMD_SIGNAL 2 Signal must cross a value
before the scope is triggered.

TRIGMD_SCOPE 3 Scope is triggered by another
scope at the trigger point
of the triggering scope,
modified by the value of
triggerscopesample (see
scopedata).

6-184

xPCScopes.ScopeSetTriggerSample

Purpose Set sample number for triggering scope

Prototype long ScopeSetTriggerSample(long scNum, long trigScSample);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] trigScSample Enter a nonnegative integer for the
number of samples acquired by the
triggering scope before starting data
acquisition on a second scope.

Return If there is an error, the xPCScopes.ScopeSetTriggerSample method
returns 0. Upon success, this method returns -1.

Description The xPCScopes.ScopeSetTriggerSample method sets the number of
samples (trigScSample) a triggering scope acquires before it triggers
a second scope (scNum). Use the xPCScopes.GetScopes method to get
a list of scopes.

For meaningful results, set trigScSample between -1 and (nSamp-1).
nSamp is the number of samples in one data acquisition cycle for the
triggering scope. However, no checking is done, and using a value that
is too big causes the scope never to be triggered.

If you want to trigger a second scope at the end of a data acquisition
cycle for the triggering scope, use a value of -1 for trigScSamp.

6-185

xPCScopes.ScopeSetTriggerSignal

Purpose Select signal to trigger scope

Prototype long ScopeSetTriggerSignal(long scNum, long triggerSignal);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] trigSignal Enter a signal number.

Return If there is an error, the xPCScopes.ScopeSetTriggerSignal method
returns 0. Upon success, this method returns -1.

Description The xPCScopes.ScopeSetTriggerSignal method sets the trigger signal
of scope scNum to trigSig. The trigger signal trigSig must be one of
the signals in the scope. Use this method only when the scope is stopped.
You can use xPCScopes.ScopeGetSignals to get the list of signals in
the scope. Use xPCScopes.ScopeGetState to check the state of the
scope. Use the xPCScopes.GetScopes method to get a list of scopes.

6-186

xPCScopes.ScopeSetTriggerSlope

Purpose Set slope of signal that triggers scope

Prototype long ScopeSetTriggerSlope(long scNum, long triggerslope);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] triggerSlope Enter the slope mode for the signal that triggers
the scope.

Return If there is an error, the xPCScopes.ScopeSetTriggerSlope method
returns 0. Upon success, this method returns -1.

Description The xPCScopes.ScopeSetTriggerSlope method sets the trigger slope
of scope scNum to trigSlope. Use this method only when the scope is
stopped. Use xPCScopes.ScopeGetState to check the state of the scope.
Use the xPCScopes.GetScopes method to get a list of scopes.

Use the constants defined here to set the trigger slope:

Constant Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either
rising or falling.

TRIGSLOPE_RISING 1 The trigger signal value must
be rising when it crosses the
trigger value.

TRIGSLOPE_FALLING 2 The trigger signal value must
be falling when it crosses the
trigger value.

6-187

xPCScopes.ScopeSoftwareTrigger

Purpose Set software trigger of scope

Prototype long ScopeSoftwareTrigger(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If there is an error, the xPCScopes.ScopeSoftwareTrigger method
returns 0. Upon success, this method returns -1.

Description The xPCScopes.ScopeSoftwareTrigger method triggers scope scNum.
The scope must be in the state Waiting for trigger for this method to
succeed. Use xPCScopes.ScopeGetState to check the state of the scope.
Use the xPCScopes.GetScopes method to get a list of scopes.

You can use the xPCScopes.ScopeSoftwareTrigger method to trigger
the scope, regardless of the trigger mode.

6-188

xPCScopes.ScopeStart

Purpose Start data acquisition for scope

Prototype long ScopeStart(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If there is an error, the xPCScopes.ScopeStart method returns 0. Upon
success, this method returns -1.

Description The xPCScopes.ScopeStart method starts or restarts the data
acquisition of scope scNum. If the scope does not have to preacquire
any samples, it enters the Waiting for Trigger state. The scope
must be in state Waiting to Start, Finished, or Interrupted for
this function to succeed. Call xPCScopes.ScopeGetState to check
the state of the scope or, for host scopes that are already started, call
xPCScopes.IsScopeFinished. Use the xPCScopes.GetScopes method
to get a list of scopes.

6-189

xPCScopes.ScopeStop

Purpose Stop data acquisition for scope

Prototype long ScopeStop(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If there is an error, the xPCScopes.ScopeStop method returns 0. Upon
success, this method returns -1.

Description The xPCScopes.ScopeStop method stops the scope scNum. This sets
the scope to the Interrupted state. The scope must be running for
this function to succeed. Use xPCScopes.ScopeGetState to determine
the state of the scope. Use the xPCScopes.GetScopes method to get
a list of scopes.

6-190

xPCScopes.TargetScopeGetGrid

Purpose Get status of grid line for particular scope

Prototype long TargetScopeGetGrid(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.TargetScopeGetGrid method returns the state of the
grid lines for scope scNum. If there is an error, this method returns -1.

Description The xPCScopes.TargetScopeGetGrid method gets the state
of the grid lines for scope scNum (which must be of type
SCTYPE_TARGET). A return value of 1 implies grid on, while 0
implies grid off. Note that when the scope mode (as set or retrieved
by xPCGetScopes/xPCScopes.TargetScopeSetMode) is set to
SCMODE_NUMERICAL, the grid is not drawn even when the grid mode is
set to 1. Use the xPCScopes.GetScopes method to get a list of scopes.

6-191

xPCScopes.TargetScopeGetMode

Purpose Get scope mode for displaying signals

Prototype long TargetScopeGetMode(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.TargetScopeGetMode method returns the value
corresponding to the scope mode. The possible values are

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

If there is an error, this method returns -1.

Description The xPCScopes.TargetScopeGetMode method gets the mode of
the scope scNum, which must be of type SCTYPE_TARGET. Use the
xPCScopes.GetScopes method to get a list of scopes.

See Also API function xPCScopes.TargetScopeGetModeStr

6-192

xPCScopes.TargetScopeGetModeStr

Purpose Get scope mode string for displaying signals

Prototype BSTR TargetScopeGetModeStr(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.TargetScopeGetModeStr method returns the string
corresponding to the scope mode. The possible strings are

• Numerical

• Redraw

• Sliding

• Rolling

Description The xPCScopes.TargetScopeGetModeStr method gets the mode string
of the scope scNum, which must be of type SCTYPE_TARGET. Use the
xPCScopes.GetScopes method to get a list of scopes.

See Also API function xPCGetScopes

6-193

xPCScopes.TargetScopeGetViewMode

Purpose Get view mode for target PC display

Prototype long TargetScopeGetViewMode();

Member
Of

XPCAPICOMLIB.xPCScopes

Return The xPCScopes.TargetScopeGetViewMode method returns the view
mode for the target PC screen. If there is an error, this method returns
-1.

Description The xPCScopes.TargetScopeGetViewMode method gets the view (zoom)
mode for the target PC display. If the returned value is not zero, the
number is of the scope currently displayed on the screen. If the value
is 0, then all defined scopes are currently displayed on the target PC
screen. In the latter case, no scopes are in focus (that is, all scopes are
unzoomed).

6-194

xPCScopes.TargetScopeGetYLimits

Purpose Get y-axis limits for scope

Prototype VARIANT TargetScopeGetYLimits(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.TargetScopeGetYLimits method returns the upper
and lower limits for scopes of type target.

Description The xPCScopes.TargetScopeGetYLimits method gets and copies the
upper and lower limits for a scope of type SCTYPE_TARGET and with scope
number scNum. If both elements are zero, the limits are autoscaled. Use
the xPCScopes.GetScopes method to get a list of scopes.

6-195

xPCScopes.TargetScopeSetGrid

Purpose Set grid mode for scope

Prototype long TargetScopeSetGrid(long scNum, long gridonoff);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] gridonoff Enter a grid value (0 or 1).

Return If there is an error, the xPCScopes.TargetScopeSetGrid method
returns 0. Upon success, this method returns -1.

Description The xPCScopes.TargetScopeSetGrid method sets the grid of a scope
of type SCTYPE_TARGET and scope number scNum to gridonoff. If
gridonoff is 0, the grid is off. If gridonoff is 1, the grid is on and grid
lines are drawn on the scope window. When the drawing mode of scope
scNum is set to SCMODE_NUMERICAL, the grid is not drawn even when
the grid mode is set to 1. Use the xPCScopes.GetScopes method to
get a list of scopes.

6-196

xPCScopes.TargetScopeSetMode

Purpose Set display mode for scope

Prototype long TargetScopeSetMode(long scNum, long mode);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

in] mode Enter the value for the mode.

Return If there is an error, the xPCScopes.TargetScopeSetMode method
returns 0. Upon success, this method returns -1.

Description The xPCScopes.TargetScopeSetMode method sets the mode of a scope
of type SCTYPE_TARGET and scope number scNum to mode. You can use
one of the following constants for mode:

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

Use the xPCScopes.GetScopes method to get a list of scopes.

6-197

xPCScopes.TargetScopeSetViewMode

Purpose Set view mode for scope

Prototype long TargetScopeSetViewMode(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If there is an error, the xPCScopes.TargetScopeSetViewMode method
returns 0. Upon success, this method returns -1.

Description The xPCScopes.TargetScopeSetViewMode method sets the target
PC screen to display one scope with scope number scNum. If you set
scNum to 0, the target PC screen displays all the scopes. Use the
xPCScopes.GetScopes method to get a list of scopes.

6-198

xPCScopes.TargetScopeSetYLimits

Purpose Set y-axis limits for scope

Prototype long TargetScopeSetYLimits(long scNum, SAFEARRAY(double)*
Ylimitarray);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in, out] Ylimitarray Enter a two-element array.

Return If there is an error, the xPCScopes.TargetScopeSetYLimits method
returns 0. Upon success, this method returns -1.

Description The xPCScopes.TargetScopeSetYLimits method sets the y-axis limits
for a scope with scope number scNum and type SCTYPE_TARGET to the
values in the double array YlimitArray. The first element is the lower
limit, and the second element is the upper limit. Set both limits to
0.0 to specify autoscaling. Use the xPCScopes.GetScopes method to
get a list of scopes.

6-199

xPCScRemSignal

Purpose Remove signal from scope

Prototype void xPCScRemSignal(int port, int scNum, int sigNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

sigNum Enter a signal number.

Description The xPCScRemSignal function removes a signal from the scope with
number scNum. The scope must already exist, and signal number sigNum
must exist in the scope. Use xPCGetScopes to determine the existing
scopes, and use xPCScGetSignals to determine the existing signals
for a scope. Use this function only when the scope is stopped. Use
xPCScGetState to check the state of the scope. Use the xPCGetScope
function to get the scope number.

See Also API functions xPCScAddSignal, xPCAddScope, xPCRemScope,
xPCGetScopes, xPCScGetSignals, xPCScGetState

Scope object method remsignal

6-200

xPCScSetDecimation

Purpose Set decimation of scope

Prototype void xPCScSetDecimation(int port, int scNum,
int decimation);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

decimation Enter an integer for the decimation.

Description The xPCScSetDecimation function sets the decimation of scope scNum.
The decimation is a number, N, meaning every Nth sample is acquired in
a scope window. Use this function only when the scope is stopped. Use
xPCScGetState to check the state of the scope. Use the xPCGetScope
function to get the scope number.

See Also API functions xPCScGetDecimation, xPCScGetState

Scope object property Decimation

6-201

xPCScSetNumPrePostSamples

Purpose Set number of pre- or posttriggering samples before triggering scope

Prototype void xPCScSetNumPrePostSamples(int port, int
scNum, int prepost);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

prepost A negative number means pretriggering, while
a positive number means posttriggering. This
function can only be used when the scope is stopped.

Description The xPCScSetNumPrePostSamples function sets the number of samples
for pre- or posttriggering for scope scNum to prepost. Use this function
only when the scope is stopped. Use xPCScGetState to check the state
of the scope. Use the xPCGetScope function to get the scope number.

See Also API functions xPCScGetNumPrePostSamples, xPCScGetState

Scope object property NumPrePostSamples

6-202

xPCScSetNumSamples

Purpose Set number of samples in one data acquisition cycle

Prototype void xPCScSetNumSamples(int port, int scNum, int samples);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

samples Enter the number of samples you want to acquire in
one cycle.

Description The xPCScSetNumSamples function sets the number of samples for
scope scNum to samples. Use this function only when the scope is
stopped. Use xPCScGetState to check the state of the scope. Use the
xPCGetScope function to get the scope number.

See Also API functions xPCScGetNumSamples, xPCScGetState

Scope object property NumSamples

6-203

xPCScSetTriggerLevel

Purpose Set trigger level for scope

Prototype void xPCScSetTriggerLevel(int port, int scNum,
double level);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

level Value for a signal to trigger data acquisition with a
scope.

Description The xPCScSetTriggerLevel function sets the trigger level level for
scope scNum. Use this function only when the scope is stopped. Use
xPCScGetState to check the state of the scope. Use the xPCGetScope
function to get the scope number for the trigger scope.

See Also API functions xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScSetTriggerMode,
xPCScGetTriggerMode, xPCScGetState

Scope object property TriggerLevel

6-204

xPCScSetTriggerMode

Purpose Set trigger mode of scope

Prototype void xPCScSetTriggerMode(int port, int scNum, int mode);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

mode Trigger mode for a scope.

Description The xPCScSetTriggerMode function sets the trigger mode of scope
scNum to mode. Use this function only when the scope is stopped. Use
xPCScGetState to check the state of the scope. Use the xPCGetScopes
function to get a list of scopes.

Use the constants defined in xpcapiconst.h to interpret the trigger
mode:

Constant Value Description

TRIGMD_FREERUN 0 The scope always triggers when it
is ready to trigger, regardless of the
circumstances. This is the default.

TRIGMD_SOFTWARE 1 Only a user can trigger the scope. It is
always possible for a user to trigger the
scope; however, if you set the scope to
this trigger mode, user intervention is
the only way to trigger the scope. No
other triggering is possible.

6-205

xPCScSetTriggerMode

Constant Value Description

TRIGMD_SIGNAL 2 Signal must cross a value before the
scope is triggered.

TRIGMD_SCOPE 3 Scope is triggered by another scope
at the trigger point of the triggering
scope, modified by the value of
triggerscopesample (see scopedata).

See Also API functions xPCGetScopes, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScGetTriggerMode, xPCScGetState

Scope object method trigger

Scope object property TriggerMode

6-206

xPCScSetTriggerScope

Purpose Select scope to trigger another scope

Prototype void xPCScSetTriggerScope(int port, int scNum,
int trigScope);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

trigScope Enter the scope type to be triggered.

Description The xPCScSetTriggerScope function sets the trigger scope of scope
scNum to trigScope. This function can only be used when the scope is
stopped. Use xPCScGetState to check the state of the scope. Use the
xPCGetScopes function to get a list of scopes.

The scope type can be SCTYPE_HOST or SCTYPE_TARGET.

See Also API functions xPCGetScopes, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScGetTriggerScope,
xPCScSetTriggerMode, xPCScGetTriggerMode, xPCScGetState

Scope object property TriggerScope

6-207

xPCScSetTriggerScopeSample

Purpose Set sample number for triggering scope

Prototype void xPCScSetTriggerScopeSample(int port, int scNum, int
trigScSamp);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

trigScSampEnter a nonnegative integer for the number of samples
acquired by the triggering scope before starting data
acquisition on a second scope.

Description The xPCScSetTriggerScopeSample function sets the number of samples
(trigScSamp) a triggering scope acquires before it triggers a second
scope (scNum). Use the xPCGetScopes function to get a list of scopes.

For meaningful results, set trigScSamp between -1 and (nSamp-1).
nSamp is the number of samples in one data acquisition cycle for the
triggering scope. However, no checking is done, and using a value that
is too big causes the scope never to be triggered.

If you want to trigger a second scope at the end of a data acquisition
cycle for the triggering scope, enter a value of -1 for trigScSamp.

See Also API functions xPCGetScopes, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScSetTriggerMode,
xPCScGetTriggerMode, xPCScGetTriggerScopeSample

Scope object properties TriggerMode, TriggerSample

6-208

xPCScSetTriggerSignal

Purpose Select signal to trigger scope

Prototype void xPCScSetTriggerSignal(int port, int
scNum, int trigSig);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

trigSig Enter a signal number.

Description The xPCScSetTriggerSignal function sets the trigger signal of scope
scNum to trigSig. The trigger signal trigSig must be one of the
signals in the scope. Use this function only when the scope is stopped.
You can use xPCScGetSignals to get the list of signals in the scope. Use
xPCScGetState to check the state of the scope. Use the xPCGetScopes
function to get a list of scopes.

See Also API functions xPCGetScopes, xPCScGetState, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode, xPCScGetTriggerMode

Scope object property TriggerSignal

6-209

xPCScSetTriggerSlope

Purpose Set slope of signal that triggers scope

Prototype void xPCScSetTriggerSlope(int port, int scNum,
int trigSlope);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

trigSlope Enter the slope mode for the signal that triggers the
scope.

Description The xPCScSetTriggerSlope function sets the trigger slope of scope
scNum to trigSlope. Use this function only when the scope is
stopped. Use xPCScGetState to check the state of the scope. Use the
xPCGetScopes function to get a list of scopes.

Use the constants defined in xpcapiconst.h to set the trigger slope:

Constant Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either
rising or falling.

TRIGSLOPE_RISING 1 The trigger signal value must be
rising when it crosses the trigger
value.

TRIGSLOPE_FALLING 2 The trigger signal value must be
falling when it crosses the trigger
value.

6-210

xPCScSetTriggerSlope

See Also API functions xPCGetScopes, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScGetTriggerSlope,
xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode, xPCScGetTriggerMode, xPCScGetState

Scope object property TriggerSlope

6-211

xPCScSoftwareTrigger

Purpose Set software trigger of scope

Prototype void xPCScSoftwareTrigger(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Description The xPCScSoftwareTrigger function triggers scope scNum. The
scope must be in the state Waiting for trigger for this function to
succeed. Use xPCScGetState to check the state of the scope. Use the
xPCGetScopes function to get a list of scopes.

You can use the xPCScSoftwareTrigger function to trigger the scope,
regardless of the trigger mode.

See Also API functions xPCGetScopes, xPCScGetState, xPCIsScFinished

Scope object method trigger

Scope object property TriggerMode

6-212

xPCScStart

Purpose Start data acquisition for scope

Prototype void xPCScStart(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Description The xPCScStart function starts or restarts the data acquisition of scope
scNum. If the scope does not have to preacquire any samples, it enters
the Waiting for Trigger state. The scope must be in state Waiting
to Start, Finished, or Interrupted for this function to succeed. Call
xPCScGetState to check the state of the scope or, for host scopes that
are already started, call xPCIsScFinished. Use the xPCGetScopes
function to get a list of scopes.

See Also API functions xPCGetScopes, xPCScGetState, xPCScStop,
xPCIsScFinished

Scope object method start (scope object)

6-213

xPCScStop

Purpose Stop data acquisition for scope

Prototype void xPCScStop(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Description The xPCScStop function stops the scope scNum. This sets the scope to
the "Interrupted" state. The scope must be running for this function
to succeed. Use xPCScGetState to determine the state of the scope. Use
the xPCGetScopes function to get a list of scopes.

See Also API functions xPCGetScopes, xPCScStart, xPCScGetState

Scope object method stop (scope object)

6-214

xPCSetEcho

Purpose Turn message display on or off

Prototype void xPCSetEcho(int port, int mode);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

mode Valid values are

0 Turns the display off

1 Turns the display on

Description On the target PC screen, the xPCSetEcho function sets the message
display on the target PC on or off. You can change the mode only when
the target application is stopped. When you turn the message display
off, the message screen no longer updates.

See Also API function xPCGetEcho

6-215

xPCSetLastError

Purpose Set last error to specific string constant

Prototype void xPCSetLastError(int error);

Arguments error Specify the string constant for the error.

Description The xPCSetLastError function sets the global error constant returned
by xPCGetLastError to error. This is useful only to set the string
constant to ENOERR to indicate no error was found.

See Also API functions xPCGetLastError, xPCErrorMsg

6-216

xPCSetLoadTimeOut

Purpose Change initialization timeout value between host PC and target PC

Prototype void xPCSetLoadTimeOut(int port, int timeOut);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

timeOut Enter the new communication timeout value.

Description The xPCSetLoadTimeOut function changes the timeout value for
communication between the host PC and target PC. The timeOut value
is the time an xPC Target™ API function waits for the communication
between the host PC and target PC to complete before returning. It
enables you to set the number of communication attempts to be made
before signaling a timeout.

For example, the function xPCLoadApp waits to check whether the model
initialization for a new application is complete before returning. When
a new target application is loaded onto the target PC, the function
xPCLoadApp waits for a certain time to check whether the model
initialization is complete before returning. If the model initialization is
incomplete within the allotted time, xPCLoadApp returns a timeout error.

By default, xPCLoadApp checks for target readiness for up to 5 seconds.
However, in the case of larger models or models requiring longer
initialization (for example, models with thermocouple boards), the
default of about 5 seconds might be insufficient and a spurious timeout
can be generated. Other functions that communicate with the target PC
will wait for timeOut seconds before declaring a timeout event.

See Also API functions xPCGetLoadTimeOut, xPCLoadApp, xPCUnloadApp

6-217

xPCSetLogMode

Purpose Set logging mode and increment value of scope

Prototype void xPCSetLogMode(int port, lgmode logging_data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

logging_data Logging mode and increment value.

Description The xPCSetLogMode function sets the logging mode and increment to the
values set in logging_data. See the structure lgmode for more details.

See Also API function xPCGetLogMode

API structure lgmode

Target object property LogMode

6-218

xPCSetParam

Purpose Change value of parameter

Prototype void xPCSetParam(int port, int paramIdx, const
double *paramValue);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

paramIdx Parameter index.

paramValue Vector with at least the correct size.

Description The xPCSetParam function sets the parameter paramIdx to the
value in paramValue. For matrices, paramValue should be a vector
representation of the matrix in column-major format. Although
paramValue is a vector of doubles, the function converts the values to
the correct types (using truncation) before setting them.

See Also API functions xPCGetParamDims, xPCGetParamIdx, xPCGetParam

6-219

xPCSetSampleTime

Purpose Change target application sample time

Prototype void xPCSetSampleTime(int port, double ts);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

ts Sample time for the target application.

Description The xPCSetSampleTime function sets the sample time, in seconds, of the
target application to ts. Use this function only when the application
is stopped.

See Also API function xPCGetSampleTime

Target object property SampleTime

6-220

xPCSetScope

Purpose Set properties of scope

Prototype void xPCSetScope(int port, scopedata state);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

state Enter a structure of type scopedata.

Description The xPCSetScope function sets the properties of a scope using a state
structure of type scopedata. Ensure that this structure contains the
properties you want to set for the scope. You can set several properties
at the same time. For convenience, call the function xPCGetScope first
to populate the structure with the current values. You can then change
the desired values. Use this function only when the scope is stopped.
Use xPCScGetState to determine the state of the scope.

See Also API functions xPCGetScope, xPCScGetState, scopedata

Scope object method set (scope object)

6-221

xPCSetStopTime

Purpose Change target application stop time

Prototype void xPCSetStopTime(int port, double tfinal);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

tfinal Enter the stop time, in seconds.

Description The xPCSetStopTime function sets the stop time of the target
application to the value in tfinal. The target application will run for
this number of seconds before stopping. Set tfinal to -1.0 to set the
stop time to infinity.

See Also API function xPCGetStopTime

Target object property StopTime

6-222

xPCStartApp

Purpose Start target application

Prototype void xPCStartApp(int port);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

Description The xPCStartApp function starts the target application loaded on the
target machine.

See Also API function xPCStopApp

Target object method start (target application object)

6-223

xPCStopApp

Purpose Stop target application

Prototype void xPCStopApp(int port);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

Description The xPCStopApp function stops the target application loaded on the
target PC. The target application remains loaded, and all parameter
changes made remain intact. If you want to stop and unload an
application, use xPCUnloadApp.

See Also API functions xPCStartApp, xPCUnloadApp

Target object method stop (target application object)

6-224

xPCTarget.AverageTET

Purpose Get average task execution time

Prototype double AverageTET();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.AverageTET method returns the average task execution
time (TET) for the target application. If there is an error, this method
returns -1.

Description The xPCTarget.AverageTET method gets the TET for the target
application. You can use this function when the target application is
running or when it is stopped.

6-225

xPCTarget.GetAppName

Purpose Get target application name

Prototype BSTR GetAppName();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetAppName method returns a string with the name
of the target application.

Description The xPCTarget.GetAppName method gets the name of the target
application. You can use the return value, model_name, in a printf or
similar statement. In case of error, the string is unchanged. Be sure
to allocate enough space to accommodate the longest target name you
have.

6-226

xPCTarget.GetExecTime

Purpose Get execution time for target application

Prototype double GetExecTime();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetExecTime method returns the current execution
time for a target application. If there is an error, this method returns -1.

Description The xPCTarget.GetExecTime method gets the current execution time
for the running target application. If the target application is stopped,
the value is the last running time when the target application was
stopped. If the target application is running, the value is the current
running time.

6-227

xPCTarget.GetNumOutputs

Purpose Get number of outputs

Prototype long GetNumOutputs();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetNumOutputs method returns the number of outputs
in the current target application. If there is an error, this method
returns -1.

Description The xPCTarget.GetNumOutputs method gets the number of outputs
in the target application. The number of outputs equals the sum of
the input signal widths of all output blocks at the root level of the
Simulink® model.

6-228

xPCTarget.GetNumParams

Purpose Get number of tunable parameters

Prototype long GetNumParams();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetNumParams method returns the number of tunable
parameters in the target application. If there is an error, this method
returns -1.

Description The xPCTarget.GetNumParams method gets the number of tunable
parameters in the target application. Use this method to see how many
parameters you can get or modify.

6-229

xPCTarget.GetNumSignals

Purpose Get number of signals

Prototype long GetNumSignals();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetNumSignals method returns the number of signals
in the target application. If there is an error, this method returns -1.

Description The xPCTarget.GetNumSignals method gets the total number of signals
in the target application that can be monitored from the host. Use this
method to see how many signals you can monitor.

6-230

xPCTarget.GetNumStates

Purpose Get number of states

Prototype long GetNumStates();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetNumStates method returns the number of states in
the target application. If there is an error, this method returns -1.

Description The xPCTarget.GetNumStates method gets the number of states in the
target application.

6-231

xPCTarget.GetOutputLog

Purpose Copy output log data to array

Prototype VARIANT GetOutputLog(long start, long numsamples,
long decimation,
long output_id);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] start Enter the index of the first sample to copy.

[in] numsamples Enter the number of samples to copy from
the output log.

[in] decimation Select whether to copy all the sample values
or every Nth value.

[in] output_id Enter an output identification number.

Return The xPCTarget.GetOutputLog method returns output log data. You get
the data for each output signal. If there is an error, this method returns
VT_ERROR, a scalar.

Description The xPCTarget.GetOutputLog method gets the output log and copies
that log to an array. Output IDs range from 0 to (N-1), where N is the
return value of xPCTarget.GetNumOutputs. Entering 1 for decimation
copies all values. Entering N copies every Nth value.

For start, the sample indices range from 0 to (N-1), where N is the
return value of xPCTarget.NumLogSamples. Get the maximum number
of samples by calling the method xPCTarget.NumLogSamples.

Note that the target application must be stopped before you get the
output log data.

6-232

xPCTarget.GetParam

Purpose Get parameter values

Prototype VARIANT GetParam(long paramIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] paramIdx Enter the index for a parameter.

Return The xPCTarget.GetParam method returns the parameter values of a
parameter.

Description The xPCTarget.GetParam method gets the parameter values of a
parameter identified by paramIdx. This method returns an array
of type VARIANT containing the parameter values, with the
conversion of the values being done in column-major format. Each
element in the array is a double, regardless of the data type of
the actual parameter. You can query the dimensions of the
array by calling the method xPCTarget.GetParamDims. See the
Microsoft® Visual Basic® .NET 2003 Demo solution located in
C:\matlabroot\toolbox\rtw\targets\xpc\api\VBNET\SigsAndParamsDemo
for an example of how to use this method.

See Also API method xPCTarget.GetParamDims, xPCTarget.SetParam

Microsoft Visual Basic .NET 2003 demo solution located in
C:\matlabroot\toolbox\rtw\targets\xpc\api\VBNET\SigsAndParamsDemo

6-233

xPCTarget.GetParamDims

Purpose Get row and column dimensions of parameter

Prototype VARIANT GetParamDims(long paramIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] paramIdx Parameter index.

Return The xPCTarget.GetParamDims method returns a VARIANT array of two
elements.

Description The xPCTarget.GetParamDims method gets a VARIANT array of two
elements. The first element contains the number of rows of the
parameter, the second element contains the number of columns for your
parameter.

6-234

xPCTarget.GetParamIdx

Purpose Get parameter index

Prototype long GetParamIdx(BSTR blockName, BSTR paramName);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] blockName Enter the full block path generated by the
Real-Time Workshop® software.

[in] paramName Enter the parameter name for a parameter
associated with the block.

Return The xPCTarget.GetParamIdx method returns the parameter index for
the parameter name. If there is an error, this method returns -1.

Description The xPCTarget.GetParamIdx method gets the parameter index for
the parameter name (paramName) associated with a Simulink® block
(blockName). Both blockName and paramName must be identical to those
generated at target application building time. The block names should
be referenced from the file model_namept.m in the generated code,
where model_name is the name of the model. Note that a block can have
one or more parameters.

6-235

xPCTarget.GetParamName

Purpose Get parameter name

Prototype VARIANT GetParamName(long paramIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] paramIdx Enter a parameter index.

Return The xPCTarget.GetParamName method returns a VARIANT array that
contains two elements, the block path and parameter name, as strings.

Description The xPCTarget.GetParamName method gets the parameter name
and block name for a parameter with the index paramIdx. If
paramIdx is invalid, xPCGetLastError returns nonzero, and the
strings are unchanged. Get the parameter index with the method
xPCTarget.GetParamIdx.

6-236

xPCTarget.GetSampleTime

Purpose Get sample time

Prototype double GetSampleTime();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetSampleTime method returns the sample time, in
seconds, of the target application. If there is an error, this method
returns -1.

Description The xPCTarget.GetSampleTime method gets the sample time, in
seconds, of the target application. You can get the error by using the
method xPCGetLastError.

6-237

xPCTarget.GetSignal

Purpose Get signal value

Prototype double GetSignal(long sigNum);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigNum Enter a signal number.

Return The xPCTarget.GetSignal method returns the current value of signal
sigNum. If there is an error, this method returns -1.

Description The xPCTarget.GetSignal method gets the current value of a signal.
Use the xPCTarget.GetSignalIdx method to get the signal number.

6-238

xPCTarget.GetSignalidsfromLabel

Purpose Get signal IDs from signal label

Prototype VARIANT GetSignalidsfromLabel(BSTR sigLabel);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigLabel Enter a signal label.

Return The xPCTarget.GetSignalidsfromLabel method returns a VARIANT
array of the signal elements contained in the signal sigLabel.

Description The xPCTarget.GetSignalidsfromLabel method returns a VARIANT
array of the signal elements contained in the signal sigLabel.

This method assumes that you have labeled the signal for which you
request the indices (see the Signal name parameter of the “Signal
Properties Dialog Box” in the Simulink® documentation). Note that
the xPC Target™ software refers to Simulink signal names as signal
labels. The creator of the application should already know the signal
name/label.

See Also API method xPCTarget.GetSignalLabel

6-239

xPCTarget.GetSignalLabel

Purpose Get signal label

Prototype BSTR GetSignalLabel(long sigIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigIdx Enter a signal index.

Return The xPCTarget.GetSignalLabel method returns the label of the signal.

Description The xPCTarget.GetSignalLabel method copies and gets the signal
label of a signal with sigIdx. The method returns the signal label. This
method assumes that you already know the signal index.

This method assumes that you have labeled the signal for which you
request the indices (see the Signal name parameter of the “Signal
Properties Dialog Box” in the Simulink® documentation). Note that
the xPC Target™ software refers to Simulink signal names as signal
labels. The creator of the application should already know the signal
name/label.

See Also API method xPCTarget.GetSignalidsfromLabel

6-240

xPCTarget.GetSignalIdx

Purpose Get signal index

Prototype long GetSignalIdx(BSTR sigName);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigName Enter a signal name.

Return The xPCTarget.GetSignalIdx method returns the index for the signal
with name sigName. If there is an error, this method returns -1.

Description The xPCTarget.GetSignalIdx method gets the index of a signal. The
name must be identical to the name generated when the application was
built. You should reference the name from the file model_namebio.m in
the generated code, where model_name is the name of the model. The
creator of the application should already know the signal name.

6-241

xPCTarget.GetSignalName

Purpose Copy signal name to character array

Prototype BSTR GetSignalName(long sigIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigIdx Enter a signal index.

Return The xPCTarget.GetSignalName method returns the name of the signal.

Description The xPCTarget.GetSignalName method copies and gets the signal
name, including the block path, of a signal with sigIdx. The method
returns a signal name, which makes it convenient to use in a printf
or similar statement. This method assumes that you already know
the signal index.

6-242

xPCTarget.GetSignalWidth

Purpose Get width of signal

Prototype long GetSignalWidth(long sigIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigIdx Enter the index of a signal.

Return The xPCTarget.GetSignalWidth method returns the signal width for a
signal with sigIdx. If there is an error, this method returns -1.

Description The xPCTarget.GetSignalWidth method gets the number of signals for
a specified signal index. Although signals are manipulated as scalars,
the width of the signal might be useful to reassemble the components
into a vector. A signal’s width is the number of signals in the vector.

6-243

xPCTarget.GetStateLog

Purpose Get state log

Prototype VARIANT GetStateLog(long start, long numsamples,
long decimation,
long state_id);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] start Enter the index of the first sample to copy.

[in] numsamples Enter the number of samples to copy from the
output log.

[in] decimation Select whether to copy all the sample values or
every Nth value.

[in] state_id Enter a state identification number.

[out, retval]
Outarray

The log is stored in Outarray, whose allocation
is the responsibility of the caller.

Return The xPCTarget.GetStateLog method returns the state log. If there is
an error, this method returns VT_ERROR, a scalar.

Description The xPCTarget.GetStateLog method gets the state log. You get the data
for each state signal in turn by specifying the state_id. State IDs range
from 1 to (N-1), where N is the return value of xPCTarget.GetNumStates.
Entering 1 for decimation copies all values. Entering N copies every
Nth value. For start, the sample indices range from 0 to (N-1),
where N is the return value of xPCTarget.NumLogSamples. Use the
xPCTarget.NumLogSamples method to get the maximum number of
samples.

Note that the target application must be stopped before you get the
number.

6-244

xPCTarget.GetStopTime

Purpose Get stop time

Prototype double GetStopTime();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetStopTime method returns the stop time as a double,
in seconds, of the target application. If there is an error, this method
returns -1.

Description The xPCTarget.GetStopTime method gets the stop time, in seconds, of
the target application. This is the amount of time the target application
runs before stopping.

6-245

xPCTarget.GetTETLog

Purpose Get TET log

Prototype VARIANT GetTETLog(long start, long numsamples,
long decimation);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] start Enter the index of the first sample to copy.

[in] numsamples Enter the number of samples to copy from the
TET log.

[in] decimation Select whether to copy all the sample values or
every Nth value.

[out, retval]
Outarray

The log is stored in Outarray, whose allocation is
the responsibility of the caller.

Return The xPCTarget.GetTETLog method returns the TET log. If there is an
error, this method returns VT_ERROR, a scalar.

Description The xPCTarget.GetTETLog method gets the task execution time (TET)
log. Entering 1 for decimation copies all values. Entering N copies
every Nth value. For start, the sample indices range from 0 to (N-1),
where N is the return value of xPCTarget.NumLogSamples. Use the
xPCTarget.NumLogSamples method to get the maximum number of
samples.

Note that the target application must be stopped before you get the
number.

6-246

xPCTarget.GetTimeLog

Purpose Get time log

Prototype VARIANT GetTimeLog(long start, long numsamples,
long decimation);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] start Enter the index of the first sample to copy.

[in] numsamples Enter the number of samples to copy from
the time log.

[in] decimation Select whether to copy all the sample values
or every Nth value.

Return The xPCTarget.GetTimeLog method returns the time log. If there is an
error, this method returns VT_ERROR, a scalar.

Description The xPCTarget.GetTimeLog method gets the time log. This is
especially relevant in the case of value-equidistant logging, where
the logged values are not necessarily uniformly spaced in time.
Entering 1 for decimation copies all values. Entering N copies every
Nth value. For start, the sample indices range from 0 to (N-1),
where N is the return value of xPCTarget.NumLogSamples. Use the
xPCTarget.NumLogSamples method to get the number of samples.

Note that the target application must be stopped before you get the
number.

6-247

xPCTarget.GetxPCError

Purpose Get error string

Prototype BSTR GetxPCError();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetxPCError method returns the string for the last
reported error. If there is no error, this method returns 0.

Description The xPCTarget.GetxPCError method gets the string of the error last
reported by another COM API method. This value is reset every time
you call a new method. Therefore, you should check this constant value
immediately after a call to an API COM method. You can use this
method in conjunction with the xPCTarget.isxPCError method, which
detects that an error has occurred.

See Also API method xPCTarget.isxPCError

6-248

xPCTarget.Init

Purpose Initialize target object to communicate with target PC

Prototype long Init(IxPCProtocol* xPCProtocol);

Member
Of

XPCAPICOMLib.xPCTarget

Return If there is an error, this method returns -1. Upon success, this method
returns 0.

If the xPCTarget.Init method initializes the target object successfully,
it returns 0. If the target object fails to initialize, this method returns -1.

Description The xPCTarget.Init method initializes the target object to
communicate with the target PC referenced by the xPCProtocol object.

6-249

xPCTarget.IsAppRunning

Purpose Return running status for target application

Prototype long IsAppRunning();

Member
Of

XPCAPICOMLib.xPCTarget

Return If the target application is stopped, the xPCTarget.IsAppRunning
method returns 0. If the target application is running, this method
returns 1. If there is an error, this method returns -1.

Description The xPCTarget.IsAppRunning method returns 1 or 0 depending on
whether the target application is stopped or running.

6-250

xPCTarget.IsOverloaded

Purpose Return overload status for target PC

Prototype long IsOverloaded();

Member
Of

XPCAPICOMLib.xPCTarget

Return If the application is running properly, the xPCTarget.IsOverloaded
method returns 1. If the CPU is overloaded, this method returns 0. If
there is an error, this method returns -1.

Description The xPCTarget.IsOverloaded method returns 1 if the target
application is running properly and has not overloaded the CPU. It
returns 0 if the target application has overloaded the target PC (CPU
Overload).

6-251

xPCTarget.isxPCError

Purpose Return error status

Prototype long isxPCError();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.isxPCError method returns the error status. If there is
an error, this method returns 0.

Description The xPCTarget.isxPCError method returns the error status. Use
this method to check for any errors that might occur after a call to
any of the xPCTarget class methods. If there is an error, call the
xPCTarget.GetxPCError method to get the string for the error.

See Also API method xPCTarget.GetxPCError

6-252

xPCTarget.LoadApp

Purpose Load target application onto target PC

Prototype long LoadApp(BSTR pathstr, BSTR filename);

Member
Of

XPCAPICOMLIB.xPCTarget

Arguments [in] pathstr Enter the full path to the target application file,
excluding the file name. For example, in C, use
a string like "C:\\work", in Microsoft® Visual
Basic®, use a string like 'C:\work'.

[in] filename Enter the name of a compiled target application
(*.dlm) without the file extension. For example,
in C use a string like "xpcosc", in Microsoft
Visual Basic, use a string like 'xpcosc'.

Return If there is an error, this method returns 0. Upon success, this method
returns -1.

Description The xPCTarget.LoadApp method loads the compiled target application
to the target PC. pathstr must not contain the trailing backslash.
pathstr can be set to NULL or to the string 'nopath' if the application
is in the current directory. The variable filename must not contain
the target application extension.

Before returning, xPCTarget.LoadApp waits for a certain amount of
time before checking whether the model initialization is complete. In the
case where the model initialization is incomplete, xPCTarget.LoadApp
returns a timeout error to indicate a connection problem (for
example, ETCPREAD). By default, xPCTarget.LoadApp checks for
target readiness five times, with each attempt taking approximately
1 second (less if the target is ready). However, in the case of larger
models or models requiring longer initialization (for example, those
with thermocouple boards), the default of about 5 seconds might be

6-253

xPCTarget.LoadApp

insufficient and a spurious timeout can be generated. The methods
xPCProtocol.GetLoadTimeOut and xPCProtocol.SetLoadTimeOut
control the number of attempts made.

6-254

xPCTarget.MaximumTET

Purpose Copy maximum task execution time to array

Prototype VARIANT MaximumTET();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.MaximumTET method returns a VARIANT object
containing the maximum task execution time (TET) and the time at
which the maximum TET was achieved. The maximum TET value is
copied into the first element, and the time at which it was achieved
is copied into the second element.

Description The xPCTarget.MaximumTET method returns the maximum TET that
was achieved during the previous target application run.

6-255

xPCTarget.MaxLogSamples

Purpose Return maximum number of samples that can be in log buffer

Prototype long MaxLogSamples();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.MaxLogSamples method returns the total number of
samples. If there is an error, this method returns -1.

Description The xPCTarget.MaxLogSamples method returns the total number of
samples that can be returned in the logging buffers.

Note that the target application must be stopped before you get the
number.

6-256

xPCTarget.MinimumTET

Purpose Copy minimum task execution time to array

Prototype VARIANT MinimumTET();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.MinimumTET method returns a VARIANT object
containing the minimum task execution time (TET) and the time at
which the minimum TET was achieved. The minimum TET value is
copied into the first element, and the time at which it was achieved
is copied into the second element.

Description The xPCTarget.MinimumTET method returns the minimum task
execution time (TET) that was achieved during the previous target
application run.

6-257

xPCTarget.NumLogSamples

Purpose Return number of samples in log buffer

Prototype long NumLogSamples();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.NumLogSamples method returns the number of samples
in the log buffer. If there is an error, this method returns -1.

Description The xPCTarget.NumLogSamples method returns the number of samples
in the log buffer. In contrast to xPCTarget.MaxLogSamples, which
returns the maximum number of samples that can be logged (because of
buffer size constraints), xPCtarget.NumLogSamples returns the number
of samples actually logged.

Note that the target application must be stopped before you get the
number.

6-258

xPCTarget.NumLogWraps

Purpose Return number of times log buffer wraps

Prototype long NumLogWraps();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.NumLogWraps method returns the number of times the
log buffer wraps. If there is an error, this method returns -1.

Description The xPCTarget.NumLogWraps method returns the number of times the
log buffer wraps.

Note that the target application must be stopped before you get the
number.

6-259

xPCTarget.SetParam

Purpose Change parameter value

Prototype long SetParam(long paramIdx, SAFEARRAY(double)*
newparamVal);

Member
Of

XPCAPICOMLIB.xPCTarget

Arguments [in] paramIdx Parameter index.

[in, out] newparamVal Vector with at least the correct size.

Return If there is an error, the xPCTarget.SetParam method returns 0. Upon
success, this method returns -1.

Description The xPCTarget.SetParam method sets the parameter paramIdx to
the value in newparamVal. For matrices, newparamVal should be a
vector representation of the matrix in column-major format. Although
newparamVal is a vector of doubles, the method converts the values to
the correct types (using truncation) before setting them.

See Also API methods xPCTarget.GetParam, xPCTarget.GetParamDims,
xPCTarget.GetParamIdx

6-260

xPCTarget.SetSampleTime

Purpose Change sample time for target application

Prototype long SetSampleTime(double ts);

Member
Of

XPCAPICOMLIB.xPCTarget

Arguments [in] ts Sample time for the target application.

Return If there is an error, the xPCTarget.SetSampleTime method returns 0.
Upon success, this method returns -1.

Description The xPCTarget.SetSampleTime method sets the sample time, in
seconds, of the target application to ts. Use this method only when
the application is stopped.

6-261

xPCTarget.SetStopTime

Purpose Change stop time of target application

Prototype long SetStopTime(double tfinal);

Member
Of

XPCAPICOMLIB.xPCTarget

Arguments [in] tfinal Enter the stop time, in seconds.

Return If there is an error, the xPCTarget.SetStopTime method returns 0.
Upon success, this method returns -1.

Description The xPCTarget.SetStopTime method sets the stop time of the target
application to the value in tfinal. The target application will run for
this number of seconds before stopping. Set tfinal to -1.0 to set the
stop time to infinity.

6-262

xPCTarget.StartApp

Purpose Start target application

Prototype long StartApp()

Member
Of

XPCAPICOMLIB.xPCTarget

Return If there is an error, the xPCTarget.StartApp method returns 0. Upon
success, this method returns -1.

Description The xPCTarget.StartApp method starts the target application loaded
on the target machine.

6-263

xPCTarget.StopApp

Purpose Stop target application

Prototype long StopApp();

Member
Of

XPCAPICOMLIB.xPCTarget

Return If there is an error, the xPCTarget.StopApp method returns 0. Upon
success, this method returns -1.

Description The xPCTarget.StopApp method stops the target application loaded
on the target PC. The target application remains loaded, and all
parameter changes made remain intact. If you want to stop and unload
an application, use xPCTarget.UnLoadApp.

6-264

xPCTarget.UnLoadApp

Purpose Unload target application

Prototype long UnLoadApp();

Member
Of

XPCAPICOMLIB.xPCTarget

Return If there is an error, the xPCTarget.UnloadApp method returns 0. Upon
success, this method returns -1.

Description The xPCTarget.UnloadApp method stops the current target application,
removes it from the target PC memory, and resets the target PC
in preparation for receiving a new target application. The method
xPCTarget.LoadApp calls this method before loading a new target
application.

6-265

xPCTargetPing

Purpose Ping target PC

Prototype int xPCTargetPing(int port);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

Return The TargetPing function does not return an error status. This function
returns 1 if it successfully reaches the target. If the target PC does not
respond, the function returns 0.

Description The xPCTargetPing function pings the target PC and returns 1 or 0
depending on whether the target responds or not. This function returns
an error string constant only when the input is incorrect (the port
number is invalid or port is not open). All other errors, such as the
inability to connect to the target, are ignored.

If you are using TCP/IP, note that xPCTargetPing will cause the target
PC to close the TCP/IP connection. You can use xPCOpenConnection
to reconnect. You can also use this xPCTargetPing feature to close the
target PC connection in the event of an aborted TCP/IP connection (for
example, if your host side program crashes).

See Also API functions xPCOpenConnection, xPCOpenSerialPort,
xPCOpenTcpIpPort, xPCClosePort

6-266

xPCTgScGetGrid

Purpose Get status of grid line for particular scope

Prototype int xPCTgScGetGrid(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return Returns the status of the grid for a scope of type SCTYPE_TARGET. If
there is an error, this function returns -1.

Description The xPCTgScGetGrid function gets the state of the grid lines for scope
scNum (which must be of type SCTYPE_TARGET). A return value of 1
implies grid on, while 0 implies grid off. Note that when the scope
mode (as set or retrieved by xPCTgScGetMode/xPCTgScSetMode) is set to
SCMODE_NUMERICAL, the grid is not drawn even when the grid mode is
set to 1. Use the xPCGetScopes function to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScSetViewMode,
xPCTgScGetViewMode, xPCTgScSetMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

6-267

xPCTgScGetMode

Purpose Get scope mode for displaying signals

Prototype int xPCTgScGetMode(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCTgScGetMode function returns the value corresponding to the
scope mode. The possible values are

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

If there is an error, this function returns -1.

Description The xPCTgScGetMode function gets the mode (SCMODE_NUMERICAL,
SCMODE_REDRAW, SCMODE_SLIDING, SCMODE_ROLLING) of the scope scNum,
which must be of type SCTYPE_TARGET. Use the xPCGetScopes function
to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScSetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Scope object property Mode

6-268

xPCTgScGetViewMode

Purpose Get view mode for target PC display

Prototype int xPCTgScGetViewMode(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCTgScGetViewMode function returns the view mode for the target
PC screen. If there is an error, this function returns -1.

Description The xPCTgScGetViewMode function gets the view (zoom) mode for the
target PC display. If the returned value is not zero, the number is of
the scope currently displayed on the screen. If the value is 0, then all
defined scopes are currently displayed on the target PC screen. In the
latter case, no scopes are in focus (that is, all scopes are unzoomed).

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScSetMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Target object property ViewMode

6-269

xPCTgScGetYLimits

Purpose Copy y-axis limits for scope to array

Prototype void xPCTgScGetYLimits(int port, int scNum,
double *limits);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

limits The first element of the array is the lower limit while the
second element is the upper limit.

Description The xPCTgScGetYLimits function gets and copies the upper and lower
limits for a scope of type SCTYPE_TARGET and with scope number scNum.
The limits are stored in the array limits. If both elements are zero,
the limits are autoscaled. Use the xPCGetScopes function to get a list of
scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScSetMode,
xPCTgScGetMode, xPCTgScSetYLimits

Scope object property YLimit

6-270

xPCTgScSetGrid

Purpose Set grid mode for scope

Prototype void xPCTgScSetGrid(int port, int scNum, int grid);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

grid Enter a grid value.

Description The xPCTgScSetGrid function sets the grid of a scope of type
SCTYPE_TARGET and scope number scNum to grid. If grid is 0, the
grid is off. If grid is 1, the grid is on and grid lines are drawn on
the scope window. When the drawing mode of scope scNum is set to
SCMODE_NUMERICAL, the grid is not drawn even when the grid mode is
set to 1. Use the xPCGetScopes function to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScGetGrid, xPCTgScSetViewMode,
xPCTgScGetViewMode, xPCTgScSetMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Scope object property Grid

6-271

xPCTgScSetMode

Purpose Set display mode for scope

Prototype void xPCTgScSetMode(int port, int scNum, int mode);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

mode Enter the value for the mode.

Description The xPCTgScSetMode function sets the mode of a scope of type
SCTYPE_TARGET and scope number scNum to mode. You can use one of
the following constants for mode:

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

Use the xPCGetScopes function to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Scope object property Mode

6-272

xPCTgScSetViewMode

Purpose Set view mode for scope

Prototype void xPCTgScSetViewMode(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Description The xPCTgScSetViewMode function sets the target PC screen to display
one scope with scope number scNum. If you set scNum to 0, the target
PC screen displays all the scopes. Use the xPCGetScopes function to
get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScGetViewMode, xPCTgScSetMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Target object property ViewMode

6-273

xPCTgScSetYLimits

Purpose Set y-axis limits for scope

Prototype void xPCTgScSetYLimits(int port, int scNum, const
double *Ylimits);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Ylimits Enter a two-element array.

Description The xPCTgScSetYLimits function sets the y-axis limits for a scope
with scope number scNum and type SCTYPE_TARGET to the values in
the double array Ylimits. The first element is the lower limit, and
the second element is the upper limit. Set both limits to 0.0 to specify
autoscaling. Use the xPCGetScopes function to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScSetMode,
xPCTgScGetMode, xPCTgScGetYLimits

Scope object property Ylimit

6-274

xPCUnloadApp

Purpose Unload target application

Prototype void xPCUnloadApp(int port);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

Description The xPCUnloadApp function stops the current target application,
removes it from the target PC memory, and resets the target PC in
preparation for receiving a new target application. The function
xPCLoadApp calls this function before loading a new target application.

See Also API function xPCLoadApp

Target object methods load, unload

6-275

xPCUnloadApp

6-276

A

xPC Target™ C API Error
Messages

The header file matlabroot\toolbox\rtw\targets\xpc\api\xpcapiconst.h
defines these error messages.

Message Description

ECOMPORTACCFAIL COM port access failed

ECOMPORTISOPEN COM port is already opened

ECOMPORTREAD ReadFile failed while reading from COM port

ECOMPORTWRITE WriteFile failed while writing to COM port

ECOMTIMEOUT timeout while receiving: check serial link

EINVFILENAME Invalid file name

EFILEOPEN Error opening file

EFILEREAD Error reading file

EFILERENAME Error renaming file

EFILEWRITE Error writing file

EINTERNAL Internal Error

EINVADDR Invalid IP Address

EINVALIDMODEL Model name does not match saved value

EINVBAUDRATE Invalid value for baudrate

EINVCOMMTYP Invalid communication type

EINVCOMPORT COM port can only be 0 or 1 (COM1 or COM2)

EINVLOGID Invalid log identifier

A xPC Target™ C API Error Messages

Message Description

EINVNUMPARAMS Invalid number of parameters

EINVNUMSIGNALS Invalid number of signals

EINVPARIDX Invalid parameter index

EINVPORT Invalid Port Number

EINVSCIDX Invalid Scope Index

EINVSCTYPE Invalid Scope type

EINVSIGIDX Invalid Signal index

EINVTRIGMODE Invalid trigger mode

EINVTRIGSLOPE Invalid Trigger Slope Value

EINVTRSCIDX Invalid Trigger Scope index

EINVARGUMENT Invalid Argument

EINVDECIMATION Decimation must be positive

EINVLGDATA Invalid lgdata structure

EINVLGINCR Invalid increment for value equidistant
logging

EINVLGMODE Invalid Logging mode

EINVNUMSAMP Number of samples must be nonnegative

EINVSTARTVAL Invalid value for "start"

EINVTFIN Invalid value for TFinal

EINVTS Invalid value for Ts (must be between 8e-6
and 10)

EINVWSVER Invalid Winsock version (1.1 needed)

EINVXPCVERSION Target has an invalid version of xPC Target

ELOADAPPFIRST Load the application first

ELOGGINGDISABLED Logging is disabled

EMALFORMED Malformed message

EMEMALLOC Memory allocation error

ENODATALOGGED No data has been logged

A-2

xPC Target™ C API Error Messages

Message Description

ENOERR No error

ENOFREEPORT No free Port in C API

ENOMORECHANNELS No more channels in scope

ENOSPACE Space not allocated

EPARNOTFOUND Parameter not found

EPARSIZMISMATCH Parameter Size mismatch

EPINGCONNECT Could not connect to Ping socket

EPINGPORTOPEN Error opening Ping port

EPINGSOCKET Ping socket error

EPORTCLOSED Port is not open

ERUNSIMFIRST Run simulation first

ESCTYPENOTTGT Scope Type is not "Target"

ESIGNOTFOUND Signal not found

ESOCKOPEN Socket Open Error

ESTARTSIMFIRST Start simulation first

ESTOPSCFIRST Stop scope first

ESTOPSIMFIRST Stop simulation first

ETCPCONNECT TCP/IP Connect Error

ETCPREAD TCP/IP Read Error

ETCPTIMEOUT TCP/IP timeout while receiving data

ETCPWRITE TCP/IP Write error

ETETLOGDISABLED TET Logging is disabled

ETGTMEMALLOC Target memory allocation failed

ETOOMANYSAMPLES Too Many Samples requested

ETOOMANYSCOPES Too many scopes are present

EUNLOADAPPFIRST Unload the application first

EUSEDYNSCOPE Use DYNAMIC_SCOPE flag at compile time

A-3

A xPC Target™ C API Error Messages

Message Description

EWRITEFILE LoadDLM: WriteFile Error

EWSINIT WINSOCK: Initialization Error

EWSNOTREADY Winsock not ready

A-4

Index

IndexA
applications

deploying 3-46
xPC Target API 2-1
xPC Target COM API 3-1

B
block parameters

tagging 3-8
block signals

tagging 3-11

C
COM API methods

communication objects 5-10
file system objects 5-15
scope objects 5-11
target objects 5-13
xPCFileSystem 5-15
xPCProtocol 5-10
xPCScopes 5-11
xPCTarget 5-13

COM applications 3-1
before you start 3-2
demos 4-1
Microsoft Visual Basic 6.0 demo 4-5
Microsoft Visual Basic 7.0 demo 4-2
Tcl/Tk scripts 4-8
Visual Basic 3-4
xpctank 3-5

custom applications
Visual C example 2-5
xPC Target COM API 3-1

custom C applications
before you start 2-2
example 2-5
guidelines 2-2

custom GUI
COM objects 3-4

custom Visual Basic applications
before you start 3-2
building 3-45
creating 3-21
creating event procedures 3-35
creating general declarations 3-33
creating load procedure 3-33
example 3-4
graphical interface 3-27
setting properties 3-29
writing code 3-31

D
diskinfo structure 6-4

G
GUI creation 3-1

L
lgmode structure 6-11

M
model-specific COM library

classes 3-18
creating 3-14
parameter class 3-20
referencing 3-22
signal class 3-19

P
parameters

tagging 3-8

Index-1

Index

S
scopedata structure 6-12
signals

tagging 3-11

T
tagging block parameters 3-7
tagging block signals 3-11
target application

running API application 2-12
using 2-13

target applications
building 2-7

V
Visual Basic example 3-4

building 3-45
creating event procedures 3-35
creating general declarations 3-33
creating load procedure 3-33
creating new 3-21
graphical interface 3-27
referencing without tags 3-41
setting properties 3-29
tagging block parameters 3-8
tagging block signals 3-11
testing 3-45
writing code 3-31

Visual C example
building 2-12
C code 2-19
creating 2-7

X
xPC Target API 2-1

application creation 2-1
example 2-5

introduction 1-4
overview 1-2

xPC Target COM API 3-1
GUI creation 3-1
introduction 1-6
overview 1-2

xPCAddScope function 6-15
xPCAverageTET function 6-16
xPCCloseConnection function 6-17
xPCClosePort function 6-18
xPCDeRegisterTarget function 6-19
xPCErrorMsg function 6-20
xPCFileSystem 5-15
xPCFileSystem.CD method 6-21
xPCFileSystem.CloseFile method 6-22
xPCFileSystem.GetFileSize method 6-25
xPCFileSystem.Init method 6-26
xPCFileSystem.MKDIR method 6-27
xPCFileSystem.OpenFile method 6-28
xPCFileSystem.PWD method 6-29
xPCFileSystem.ReadFile method 6-30
xPCFileSystem.RemoveFile method 6-31
xPCFileSystem.RMDIR method 6-32
xPCFileSystem.ScGetFileName method 6-33
xPCFileSystem.ScGetWriteMode method 6-34
xPCFileSystem.ScGetWriteSize method 6-35
xPCFileSystem.ScSetFileName method 6-36
xPCFileSystem.ScSetWriteMode method 6-37
xPCFileSystem.ScSetWriteSize method 6-38
xPCFileSystem.WriteFile method 6-39
xPCFreeAPI function 6-40
xPCFSCD function 6-41
xPCFSCloseFile function 6-42
xPCFSDir function 6-43
xPCFSDirSize function 6-45
xPCFSDiskInfo function 6-47
xPCFSGetError function 6-48
xPCFSGetFileSize function 6-49
xPCFSGetPWD function 6-50
xPCFSMKDIR function 6-51

Index-2

Index

xPCFSOpenFile function 6-52
xPCFSReadFile function 6-53
xPCFSRemoveFile function 6-54
xPCFSWriteFile function 6-62
xPCGetAppName function 6-64
xPCGetEcho function 6-65
xPCGetExecTime function 6-66
xPCGetLastError function 6-67
xPCGetLoadTimeOut function 6-68
xPCGetLogMode function 6-70
xPCGetNumOutputs function 6-71
xPCGetNumParams function 6-72
xPCGetNumSignals function 6-73
xPCGetNumStates function 6-74
xPCGetOutputLog function 6-75
xPCGetParam function 6-77
xPCGetParamDims function 6-78
xPCGetParamIdx function 6-79
xPCGetParamName function 6-80
xPCGetSampleTime function 6-81
xPCGetScope function 6-82
xPCGetScopes function 6-83
xPCGetSignal function 6-84
xPCGetSignalIdx function 6-85
xPCGetSignalName function 6-89
xPCGetSignals function 6-90
xPCGetSignalWidth function 6-92
xPCGetStateLog function 6-93
xPCGetStopTime function 6-95
xPCGetTETLog function 6-97
xPCGetTimeLog function 6-98
xPCInitAPI function 6-99
xPCIsAppRunning function 6-100
xPCIsOverloaded function 6-101
xPCIsScFinished function 6-102
xPCLoadApp function 6-103
xPCLoadParamSet function 6-105
xPCMaximumTET function 6-107
xPCMaxLogSamples function 6-106
xPCMinimumTET function 6-108

xPCNumLogSamples function 6-109
xPCNumLogWraps function 6-110
xPCOpenConnection function 6-111
xPCOpenSerialPort function 6-112
xPCOpenTcpIpPort function 6-113
xPCProtocol 5-10
xPCProtocol.Close method 6-114
xPCProtocol.GetLoadTimeOut method 6-115
xPCProtocol.GetxPCErrorMsg method 6-116
xPCProtocol.Init method 6-117
xPCProtocol.isxPCError method 6-118
xPCProtocol.Port method 6-119
xPCProtocol.RS232Connect method 6-121
xPCProtocol.SetLoadTimeOut method 6-122
xPCProtocol.TargetPing method 6-123
xPCProtocol.TcpIpConnect method 6-124
xPCProtocol.Term method 6-125
xPCProtocol.xPCReboot method 6-120
xPCReboot function 6-126
xPCRegisterTarget function 6-128
xPCRemScope function 6-130
xPCReOpenPort function 6-127
xPCSaveParamSet function 6-131
xPCScAddSignal function 6-132
xPCScGetData function 6-133
xPCScGetDecimation function 6-135
xPCScGetNumPrePostSamples function 6-136
xPCScGetNumSamples function 6-137
xPCScGetSignals function 6-138
xPCScGetStartTime function 6-139
xPCScGetState function 6-140
xPCScGetTriggerLevel function 6-142
xPCScGetTriggerMode function 6-143
xPCScGetTriggerScope function 6-145
xPCScGetTriggerScopeSample function 6-146
xPCScGetTriggerSignal function 6-147
xPCScGetTriggerSlope function 6-148
xPCScGetType function 6-150
xPCScopes 5-11
xPCScopes.AddFileScope method 6-151

Index-3

Index

xPCScopes.AddHostScope method 6-152
xPCScopes.AddTargetScope method 6-153
xPCScopes.GetScopes method 6-154
xPCScopes.GetxPCError method 6-155
xPCScopes.Init method 6-156
xPCScopes.IsScopeFinished method 6-157
xPCScopes.IsxPCError method 6-158
xPCScopes.RemScope method 6-159
xPCScopes.ScopeAddSignal method 6-160
xPCScopes.ScopeGetData method 6-161
xPCScopes.ScopeGetDecimation method 6-162
xPCScopes.ScopeGetNumPrePostSamples

method 6-163
xPCScopes.ScopeGetNumSamples method 6-164
xPCScopes.ScopeGetSignals method 6-165
xPCScopes.ScopeGetStartTime method 6-166
xPCScopes.ScopeGetState method 6-167
xPCScopes.ScopeGetTriggerLevel

method 6-169
xPCScopes.ScopeGetTriggerMode

method 6-170
xPCScopes.ScopeGetTriggerModeStr

method 6-172
xPCScopes.ScopeGetTriggerScopeSample

method 6-173
xPCScopes.ScopeGetTriggerSignal

method 6-174
xPCScopes.ScopeGetTriggerSlope

method 6-175
xPCScopes.ScopeGetTriggerSlopeStr

method 6-176
xPCScopes.ScopeGetType method 6-177
xPCScopes.ScopeRemSignal method 6-178
xPCScopes.ScopeSetDecimation method 6-179
xPCScopes.ScopeSetNumPrePostSamples

method 6-180
xPCScopes.ScopeSetNumSamples method 6-181
xPCScopes.ScopeSetTriggerLevel

method 6-182

xPCScopes.ScopeSetTriggerMode
method 6-183

xPCScopes.ScopeSetTriggerScopeSample
method 6-185

xPCScopes.ScopeSetTriggerSignal
method 6-186

xPCScopes.ScopeSetTriggerSlope
method 6-187

xPCScopes.ScopeStart method 6-189
xPCScopes.ScopeStop method 6-190
xPCScopes.TargetScopeGetMode method 6-192
xPCScopes.TargetScopeGetModeStr

method 6-193
xPCScopes.TargetScopeGetViewMode

method 6-194
xPCScopes.TargetScopeGetYLimits

method 6-195
xPCScopes.TargetScopeSetGrid method 6-196
xPCScopes.TargetScopeSetMode method 6-197
xPCScopes.TargetScopeSetViewMode

method 6-198
xPCScopes.TargetScopeSetYLimits

method 6-199
xPCScopes.TargetSopecGetGrid method 6-191
xPCScRemSignal function 6-200
xPCScSetDecimation function 6-201
xPCScSetNumPrePostSamples function 6-202
xPCScSetNumSamples function 6-203
xPCScSetTriggerLevel function 6-204
xPCScSetTriggerMode function 6-205
xPCScSetTriggerScope function 6-207
xPCScSetTriggerScopeSample function 6-208
xPCScSetTriggerSignal function 6-209
xPCScSetTriggerSlope function 6-210
xPCScSoftwareTrigger function 6-212
xPCScStart function 6-213
xPCScStop function 6-214
xPCSetEcho function 6-215
xPCSetLastError function 6-216
xPCSetLoadTimeOut function 6-217

Index-4

Index

xPCSetLogMode function 6-218
xPCSetParam function 6-219
xPCSetSampleTime function 6-220
xPCSetScope function 6-221
xPCSetStopTime function 6-222
xPCStartApp function 6-223
xPCStopApp function 6-224
xpctank model 3-5
xPCTarget 5-13
xPCTarget.AverageTET method 6-225
xPCTarget.GetAppName method 6-226
xPCTarget.GetExecTime method 6-227
xPCTarget.GetNumOutputs method 6-228
xPCTarget.GetNumParams method 6-229
xPCTarget.GetNumSignals method 6-230
xPCTarget.GetNumStates method 6-231
xPCTarget.GetOutputLog method 6-232
xPCTarget.GetParam method 6-233
xPCTarget.GetParamDims method 6-234
xPCTarget.GetParamIdx method 6-235
xPCTarget.GetParamName method 6-236
xPCTarget.GetSampleTime method 6-237
xPCTarget.GetSignal method 6-238
xPCTarget.GetSignalIdx method 6-241
xPCTarget.GetSignalName method 6-242
xPCTarget.GetSignalWidth method 6-243
xPCTarget.GetStateLog method 6-244
xPCTarget.GetStopTime method 6-245
xPCTarget.GetTETLog method 6-246

xPCTarget.GetTimeLog method 6-247
xPCTarget.GetxPCError method 6-248
xPCTarget.Init method 6-249
xPCTarget.IsAppRunning method 6-250
xPCTarget.IsOverloaded method 6-251
xPCTarget.isxPCError method 6-252
xPCTarget.LoadApp method 6-253
xPCTarget.MaximumTET method 6-255
xPCTarget.MaxLogSamples method 6-256
xPCTarget.MinimumTET method 6-257
xPCTarget.NumLogSamples method 6-258
xPCTarget.NumLogWraps method 6-259
xPCTarget.SetParam method 6-260
xPCTarget.SetSampleTime method 6-261
xPCTarget.SetStopTime method 6-262
xPCTarget.StartApp method 6-263
xPCTarget.StopApp method 6-264
xPCTarget.UnloadApp method 6-265
xPCTargetPing function 6-266
xPCTgScGetGrid function 6-267
xPCTgScGetMode function 6-268
xPCTgScGetViewMode function 6-269
xPCTgScGetYLimits function 6-270
xPCTgScSetGrid function 6-271
xPCTgScSetMode function 6-272
xPCTgScSetViewMode function 6-273
xPCTgScSetYLimits function 6-274
xPCUnloadApp function 6-275

Index-5

	toc
	Introduction
	xPC Target API versus xPC Target COM API
	What Is xPC Target API?
	What Is xPC Target COM API?
	Required Products

	xPC Target API
	Before You Start
	Introduction
	Important Guidelines

	Visual C Example
	Introduction
	Directories and Files
	Building the xPC Target Application
	Using Another C/C++ Compiler

	Creating a Visual C Application
	Placing the Target Application File in a Different Directory

	Building a Visual C Application
	Running a Visual C xPC Target API Application
	Using the xPC Target API C Application
	How to Run the sf_car_xpc Executable

	C Code for sf_car_xpc.c

	xPC Target COM API
	Before You Start
	Example Visual Basic GUI Using COM Objects
	Introduction
	Description of Simulink Water Tank Model
	Creating a Simulink Target Model
	Tagging Block Parameters
	Tagging Block Signals
	Creating the Target Application and Model-Specific COM Library
	Model-Specific COM Interface Library (model_nameCOMiface.dll)
	Model-Specific COM Signal Object Classes
	Model-Specific COM Parameter Object Classes

	Creating a New Microsoft ® Visual Basic Project
	Referencing the xPC Target COM API and Model-Specific COM Librar
	Viewing Model-Specific COM Signal Object Classes
	Viewing Model-Specific COM Parameter Object Classes

	Creating the Graphical Interface
	Setting Properties
	Writing Code
	Creating the General Declarations
	Creating the Load Procedure
	Creating Event Procedures
	Creating Event Procedures to Load Applications
	Creating Event Procedures to Start and Stop Applications
	Creating Event Procedures to Vary Input Values
	Creating Event Procedures to Display Signal Values at the Host
	Creating Unload and Termination Procedures

	Referencing Parameters and Signals Without Using Tags
	Getting Parameter IDs with the GetParamIdx Method
	Getting Signal IDs with the GetSignalIdx Method

	Testing the Visual Basic Application
	Building the Visual Basic Application
	Deploying the API Application
	Registering Dependent Dynamic Link Libraries

	Creating a New Visual Basic Project Using Microsoft ® Visual Stu

	xPC Target COM API Demos and Scripts
	Microsoft ® Visual Basic 7.1 (.NET 2003) Demo
	Introduction
	Before Starting
	Accessing the Demo Project Solution
	Rebuilding the Demo Project Solution
	Using the Demo Executable

	Microsoft ® Visual Basic 6.0 Demo
	Introduction
	Before Starting
	Accessing the sf_car_xpc Project
	Rebuilding the sf_car_xpc Project
	Using the sf_car_xpc Executable

	Tcl/Tk Scripts
	Introduction
	Required Tcl/Tk Software
	Using the Demo Scripts

	API Function and Method Reference
	C API Functions
	Logging, Scope, and File System Structures
	Communications Functions
	Target Application Functions
	Data Logging Functions
	Scope Functions
	File System Functions
	Target Scope Functions
	Monitoring and Tuning Functions
	Miscellaneous Functions

	COM API Methods
	Communication Objects (xPCProtocol)
	Scope Objects (xPCScopes)
	Target Objects (xPCTarget)
	File System Objects (xPCFileSystem)

	API Functions and Methods
	xPC Target C API Error Messages
	Index

